Evaluation of overnight hold of whole blood at room temperature before component processing: effect of red blood cell (RBC) additive solutions on in vitro RBC measures

Transfusion ◽  
2011 ◽  
Vol 51 ◽  
pp. 15S-24S ◽  
Author(s):  
Pieter F. van der Meer ◽  
Jose A. Cancelas ◽  
Rebecca Cardigan ◽  
Dana V. Devine ◽  
Hans Gulliksson ◽  
...  
Author(s):  
Adam Attila Matrai ◽  
Gabor Varga ◽  
Bence Tanczos ◽  
Barbara Barath ◽  
Adam Varga ◽  
...  

BACKGROUND: The effects of temperature on micro-rheological variables have not been completely revealed yet. OBJECTIVE: To investigate micro-rheological effects of heat treatment in human, rat, dog, and porcine blood samples. METHODS: Red blood cell (RBC) - buffer suspensions were prepared and immersed in a 37, 40, and 43°C heat-controlled water bath for 10 minutes. Deformability, as well as mechanical stability of RBCs were measured in ektacytometer. These tests were also examined in whole blood samples at various temperatures, gradually between 37 and 45°C in the ektacytometer. RESULTS: RBC deformability significantly worsened in the samples treated at 40 and 43°C degrees, more expressed in human, porcine, rat, and in smaller degree in canine samples. The way of heating (incubation vs. ektacytometer temperation) and the composition of the sample (RBC-PBS suspension or whole blood) resulted in the different magnitude of RBC deformability deterioration. Heating affected RBC membrane (mechanical) stability, showing controversial alterations. CONCLUSION: Significant changes occur in RBC deformability by increasing temperature, showing inter-species differences. The magnitude of alterations is depending on the way of heating and the composition of the sample. The results may contribute to better understanding the micro-rheological deterioration in hyperthermia or fever.


1991 ◽  
Vol 156 (1) ◽  
pp. 233-248 ◽  
Author(s):  
S. THOMAS ◽  
R. KINKEAD ◽  
P. J. WALSH ◽  
C. M. WOOD ◽  
S. F. PERRY

The sensitivity of red blood cell Na+/H+ exchange to exogenous adrenaline was assessed in vitro using blood withdrawn from catheterized rainbow trout (Oncorhynchus mykiss) maintained under normoxic conditions [water PO2, (PwO2)=20.66 kPa] or after exposure to moderate hypoxia (PwO2=6.67-9.33 kPa) for 48 h, which chronically elevated plasma adrenaline, but not noradrenaline, levels. Peak changes in whole-blood extracellular pH over a 30 min period after adding 50–1000 nmoll−1 adrenaline were employed as an index of sensitivity; the blood was pre-equilibrated to simulate arterial blood gas tensions in severely hypoxic fish (PaO2=2.0 kPa, PaCO2=0.31 kPa). Blood pooled from normoxic fish displayed a dose-dependent reduction in whole-blood pH after addition of adrenaline. Blood pooled from three separate groups of hypoxic fish, however, displayed diminished sensitivity to adrenaline, ranging from complete desensitization to a 60%reduction of the response. Subsequent experiments performed on blood from individual (i.e. not pooled) normoxic or hypoxic fish demonstrated an inverse correlation between the intensity of H+ extrusion (induced by exogenous adrenaline addition) and endogenous plasma adrenaline levels at the time of blood withdrawal. However, acute increases in plasma adrenaline levels in vitro did not affect the responsiveness of the red blood cell to subsequent adrenergic stimulation. The intensity of H+ extrusion was inversely related to the PaO2in vivo between 2.67 and 10.66 kPa, and directly related to the logarithm of the endogenous plasma adrenaline level. The results suggest that desensitization of Na+/H+ exchange in chronically hypoxic fish is related to persistent elevation of levels of this catecholamine. This desensitization can be reversed in vitro as a function of time, but only when blood is maintained under sufficiently aerobic conditions.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2890-2890
Author(s):  
Rodrigo Morales ◽  
Kimberley A. Buytaert-Hoefen ◽  
Eric T. Hansen ◽  
Dennis Hlavinka ◽  
Raymond Goodrich ◽  
...  

Abstract Although prion diseases are rare in humans, the established link between a new variant form of CJD (vCJD) and the consumption of cattle meat contaminated by BSE have raised concerns about a possible outbreak of a large epidemic in the human population. Over the past few years, BSE has become a significant health concern in several countries, and it now seems apparent that vCJD can also be iatrogenically transmitted from human to human by blood transfusion. Exacerbating this state of affairs is the lack of a reliable test to identify individuals incubating the disease during the long and silent period from the onset of infection to the appearance of clinical symptoms. The purpose of this research study was to evaluate the effectiveness of separation of whole blood and washing of the red cell fraction for the removal of infectious scrapie prion protein (PrPSc) from red blood cell (RBC) suspensions. Samples of human, whole blood were spiked with 5 × 106 LD50 263K PrPSc. Analysis of the treated sample supernatants by Western blot revealed that approximately >88% of the PrPSc was removed with the initial plasma expression and the equivalent of 6% was detected in a saline wash (300 mL; 0.9% saline). The final sample of RBCs revealed no detectable levels of PrPSc by Western blots. Further analysis of the treated RBCs using the PMCA assay indicated detectable amounts of PrPSc only after 2 consecutive amplification rounds. Semi-quantitative analysis of PMCA amplification enabled us to estimate that the treated RBCs contained less than 1 × 104 LD50 PrPSc. This corresponded to removal levels exceeding ≥99% of spiked material in whole blood. These in vitro estimations were confirmed by in vivo infectivity studies in a hamster model of disease transmission. Results from in vivo studies displayed significant differences in the incubation periods of the spiked blood inoculated hamsters (100.1 ± 1.7) versus washed RBCs (135.8 ± 6.7). Moreover, a substantial difference in the attack rate (6/15: 40% in washed RBC, versus 13/13: 100% in spiked blood) further indicated a substantial removal of infectious prions. Comparison of this data with results of animals inoculated with different dilutions of infectious material, indicated a >99.94% reduction of infectivity. Washed, packed human red cells produced by this procedure were able to be stored in standard additive solutions (AS-3) for 42 days while still meeting all in vitro blood bank standards for acceptable red cell quality. Conclusion This data suggests that separation of plasma coupled with a simple, low volume wash of red cells may represent an efficient method to remove prions from red blood cell fractions, thus reducing possible infectivity of these products.


Vox Sanguinis ◽  
2015 ◽  
Vol 108 (4) ◽  
pp. 359-367 ◽  
Author(s):  
M. Eckstein ◽  
R. Zimmermann ◽  
T. Roth ◽  
B. Hauck-Dlimi ◽  
E. F. Strasser ◽  
...  

1992 ◽  
Vol 173 (1) ◽  
pp. 25-41 ◽  
Author(s):  
R. A. Ferguson ◽  
N. Sehdev ◽  
B. Bagatto ◽  
B. L. Tufts

In vitro experiments were carried out to examine the interactions between oxygen and carbon dioxide transport in the blood of the sea lamprey. Oxygen dissociation curves for whole blood obtained from quiescent lampreys had Hill numbers (nH) ranging from 1.52 to 1.89. The Bohr coefficient for whole blood was -0.17 when extracellular pH (pHe) was considered, but was much greater (-0.63) when red blood cell pH (pHi) was considered. The pHi was largely dependent on haemoglobin oxygen- saturation (SO2) and the pH gradient across the red blood cell membrane was often reversed when PCO2 was increased and/or SO2 was lowered. The magnitude of the increase in pHi associated with the Haldane effect ranged from 0.169 pH units at 2.9 kPa PCO2 to 0.453 pH units at a PCO2 of 0.2 kPa. Deoxygenated red blood cells had a much greater total CO2 concentration (CCO2) than oxygenated red blood cells, but the nonbicarbonate buffer value for the red blood cells was unaffected by oxygenation. Plasma CCO2 was not significantly different under oxygenated or deoxygenated conditions. Partitioning of CO2 carriage in oxygenated and deoxygenated blood supports recent in vivo observations that red blood cell CO2 carriage can account for much of the CCO2 difference between arterial and venous blood. Together, the results also suggest that oxygen and carbon dioxide transport may not be tightly coupled in the blood of these primitive vertebrates. Finally, red cell sodium concentrations were dependent on oxygen and carbon dioxide tensions in the blood, suggesting that sodium-dependent ion transport processes may contribute to the unique strategy for gas transport in sea lamprey blood.


1990 ◽  
Vol 154 (1) ◽  
pp. 475-489 ◽  
Author(s):  
P. J. Walsh ◽  
C. M. Wood ◽  
S. Thomas ◽  
S. F. Perry

Red blood cell metabolism was studied in vitro using whole blood obtained by catheter from resting rainbow trout (Oncorhynchus mykiss). Preparations were viable as shown by stable NTP, metabolite and catecholamine levels and acid-base status, all of which remained at in vivo levels over the 2 h incubation period. Enzymes diagnostic of glycolysis, the tricarboxylic acid (TCA) cycle and phosphagen metabolism were all present in significant amounts in red blood cells. In direct comparisons of 14C-labelled substrates at normal resting plasma concentrations, rates of CO2 production were in the order: glucose greater than lactate greater than alanine greater than oleate. Total CO2 production rates from these four oxidative substrates did not equal directly measured O2 consumption rates, indicating that other substrates may also be important in vivo. Oxidative pathway Km values for glucose (8.4 mmol l-1), lactate (3.3 mmol l-1) and alanine (0.8 mmol l-1) were well within the normal physiological ranges of plasma concentrations. Glucose concentration did not affect lactate oxidation rates, but there was some inhibition (27%) of glucose oxidation by high lactate concentrations (20 mmol l-1). The observed Km values and competitive interactions suggest that changes in plasma concentrations associated with environmental stresses can considerably alter the relative rates of oxidation of glucose and lactate in vivo. Considerable pentose-phosphate shunt activity was detected in red cells, as indicated by high activities of glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase and high CO2 production rates from (1–14C)-labelled glucose. Even in the presence of normal O2 levels, a significant percentage (28%) of glucose metabolism was directed to lactate production. Taken together, these results demonstrate that rainbow trout whole blood incubated in vitro constitutes a dynamic and viable system for metabolic studies at the pathway level.


Sign in / Sign up

Export Citation Format

Share Document