DURATION AND CONSISTENCY OF HISTORICAL SELECTION ARE CORRELATED WITH ADAPTIVE TRAIT EVOLUTION IN THE STREAMSIDE SALAMANDER,AMBYSTOMA BARBOURI

Evolution ◽  
2009 ◽  
Vol 63 (10) ◽  
pp. 2636-2647 ◽  
Author(s):  
Jonathan M. Eastman ◽  
John H. Niedzwiecki ◽  
B. Paul Nadler ◽  
Andrew Storfer
2012 ◽  
pp. 233-274
Author(s):  
Jon E. Keeley ◽  
William J. Bond ◽  
Ross A. Bradstock ◽  
Juli G. Pausas ◽  
Philip W. Rundel

2016 ◽  
Vol 43 (12) ◽  
pp. 2310-2324 ◽  
Author(s):  
D.-C. Jhwueng ◽  
V. Maroulas

Author(s):  
Quentin Sprengelmeyer ◽  
John E Pool

Understanding the genetic properties of adaptive trait evolution is a fundamental crux of biological inquiry that links molecular processes to biological diversity. Important uncertainties persist regarding the genetic predictability of adaptive trait change, the role of standing variation, and whether adaptation tends to result in the fixation of favored variants. Here, we use the recurrent evolution of enhanced ethanol resistance in Drosophila melanogaster during this species’ worldwide expansion as a promising system to add to our understanding of the genetics of adaptation. We find that elevated ethanol resistance has evolved at least three times in different cooler regions of the species’ modern range - not only at high latitude but also in two African high altitude regions - and that ethanol and cold resistance may have a partially shared genetic basis. Applying a bulk segregant mapping framework, we find that the genetic architecture of ethanol resistance evolution differs substantially not only between our three resistant populations, but also between two crosses involving the same European population. We then apply population genetic scans for local adaptation within our quantitative trait locus regions, and we find potential contributions of genes with annotated roles in spindle localization, membrane composition, sterol and alcohol metabolism, and other processes. We also apply simulation-based analyses that confirm the variable genetic basis of ethanol resistance and hint at a moderately polygenic architecture. However, these simulations indicate that larger-scale studies will be needed to more clearly quantify the genetic architecture of adaptive evolution, and to firmly connect trait evolution to specific causative loci.


2019 ◽  
Vol 146 (3) ◽  
pp. 166
Author(s):  
Tracy S. Hawkins ◽  
Craig S. Echt ◽  
Margaret S. Devall ◽  
Paul B. Hamel ◽  
A. Dan Wilson ◽  
...  

2021 ◽  
Vol 7 (6) ◽  
pp. 478
Author(s):  
Xue-Wei Wang ◽  
Tom W. May ◽  
Shi-Liang Liu ◽  
Li-Wei Zhou

Hyphodontia sensu lato, belonging to Hymenochaetales, accommodates corticioid wood-inhabiting basidiomycetous fungi with resupinate basidiocarps and diverse hymenophoral characters. Species diversity of Hyphodontia sensu lato has been extensively explored worldwide, but in previous studies the six accepted genera in Hyphodontia sensu lato, viz. Fasciodontia, Hastodontia, Hyphodontia, Kneiffiella, Lyomyces and Xylodon were not all strongly supported from a phylogenetic perspective. Moreover, the relationships among these six genera in Hyphodontia sensu lato and other lineages within Hymenochaetales are not clear. In this study, we performed comprehensive phylogenetic analyses on the basis of multiple loci. For the first time, the independence of each of the six genera receives strong phylogenetic support. The six genera are separated in four clades within Hymenochaetales: Fasciodontia, Lyomyces and Xylodon are accepted as members of a previously known family Schizoporaceae, Kneiffiella and Hyphodontia are, respectively, placed in two monotypic families, viz. a previous name Chaetoporellaceae and a newly introduced name Hyphodontiaceae, and Hastodontia is considered to be a genus with an uncertain taxonomic position at the family rank within Hymenochaetales. The three families emerged between 61.51 and 195.87 million years ago. Compared to other families in the Hymenochaetales, these ages are more or less similar to those of Coltriciaceae, Hymenochaetaceae and Oxyporaceae, but much older than those of the two families Neoantrodiellaceae and Nigrofomitaceae. In regard to species, two, one, three and 10 species are newly described from Hyphodontia, Kneiffiella, Lyomyces and Xylodon, respectively. The taxonomic status of additional 30 species names from these four genera is briefly discussed; an epitype is designated for X. australis. The resupinate habit and poroid hymenophoral configuration were evaluated as the ancestral state of basidiocarps within Hymenochaetales. The resupinate habit mainly remains, while the hymenophoral configuration mainly evolves to the grandinioid-odontioid state and also back to the poroid state at the family level. Generally, a taxonomic framework for Hymenochaetales with an emphasis on members belonging to Hyphodontia sensu lato is constructed, and trait evolution of basidiocarps within Hymenochaetales is revealed accordingly.


Sign in / Sign up

Export Citation Format

Share Document