adaptive trait
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 33)

H-INDEX

17
(FIVE YEARS 2)

eLife ◽  
2022 ◽  
Vol 11 ◽  
Author(s):  
Catherine Stark ◽  
Teanna Bautista-Leung ◽  
Joanna Siegfried ◽  
Daniel Herschlag

Cold temperature is prevalent across the biosphere and slows the rates of chemical reactions. Increased catalysis has been predicted to be a dominant adaptive trait of enzymes to reduced temperature, and this expectation has informed physical models for enzyme catalysis and influenced bioprospecting strategies. To systematically test rate enhancement as an adaptive trait to cold, we paired kinetic constants of 2223 enzyme reactions with their organism’s optimal growth temperature (TGrowth) and analyzed trends of rate constants as a function of TGrowth. These data do not support a general increase in rate enhancement in cold adaptation. In the model enzyme ketosteroid isomerase (KSI), there is prior evidence for temperature adaptation from a change in an active site residue that results in a tradeoff between activity and stability. Nevertheless, we found that little of the rate constant variation for 20 KSI variants was accounted for by TGrowth. In contrast, and consistent with prior expectations, we observed a correlation between stability and TGrowth across 433 proteins. These results suggest that temperature exerts a weaker selection pressure on enzyme rate constants than stability and that evolutionary forces other than temperature are responsible for the majority of enzymatic rate constant variation.


Author(s):  
Quentin D Sprengelmeyer ◽  
Justin B Lack ◽  
Dylan T Braun ◽  
Matthew J Monette ◽  
John E Pool

Abstract Important uncertainties persist regarding the genetic architecture of adaptive trait evolution in natural populations, including the number of genetic variants involved, whether they are drawn from standing genetic variation, and whether directional selection drives them to complete fixation. Here, we take advantage of a unique natural population of Drosophila melanogaster from the Ethiopian highlands, which has evolved larger body size than any other known population of this species. We apply a bulk segregant quantitative trait locus (QTL) mapping approach to four unique crosses between highland Ethiopian and lowland Zambian populations for both thorax length and wing length. Results indicated a persistently variable genetic basis for these evolved traits (with largely distinct sets of QTLs for each cross), and at least a moderately polygenic architecture with relatively strong effects present. We complemented these mapping experiments with population genetic analyses of QTL regions and gene ontology enrichment analysis, generating strong hypotheses for specific genes and functional processes that may have contributed to these adaptive trait changes. Finally, we find that the genetic architectures our QTL mapping results for size traits mirror those from similar experiments on other recently-evolved traits in this species. Collectively, these studies suggest a recurring pattern of polygenic adaptation in this species, in which causative variants do not approach fixation and moderately strong effect loci are present.


Author(s):  
David C. Karasz ◽  
Anna I. Weaver ◽  
Daniel H. Buckley ◽  
Roland C. Wilhelm

2021 ◽  
Author(s):  
Tarang K Mehta ◽  
Luca Penso-Dolfin ◽  
Will K Nash ◽  
Sushmita Roy ◽  
Federica Di Palma ◽  
...  

The divergence of regulatory regions and gene regulatory network (GRN) rewiring is a key driver of cichlid phenotypic diversity. However, the contribution of miRNA binding site turnover has yet to be linked to GRN evolution across cichlids. Here, we extend our previous studies by analysing the selective constraints driving evolution of miRNA and transcription factor (TF) binding sites of target genes, to infer instances of cichlid GRN rewiring associated with regulatory binding site turnover. Comparative analyses identified increased species-specific networks that are functionally associated to traits of cichlid phenotypic diversity. The evolutionary rewiring is associated with differential models of miRNA snd TF binding site turnover, driven by a high proportion of fast-evolving polymorphic sites in adaptive trait genes compared to subsets of random genes. Positive selection acting upon discrete mutations in these regulatory regions is likely to be an important mechanism in rewiring GRNs in rapidly radiating cichlids. Regulatory variants of functionally associated miRNA and TF binding sites of visual opsin genes differentially segregate according to phylogeny and ecology of Lake Malawi species, identifying both rewired e.g. clade-specific and conserved network motifs of adaptive trait associated GRNs. Our approach revealed several novel candidate regulators, regulatory regions and three-node motifs across cichlid genomes with previously reported associations to known adaptive evolutionary traits.


2021 ◽  
Author(s):  
Quentin D Sprengelmeyer ◽  
Justin B Lack ◽  
Dylan T Braun ◽  
Matthew J Monette ◽  
John E. Pool

Important uncertainties persist regarding the genetic architecture of adaptive trait evolution in natural populations, including the number of genetic variants involved, whether they are drawn from standing genetic variation, and whether directional selection drives them to complete fixation. Here, we take advantage of a unique natural population of Drosophila melanogaster from the Ethiopian highlands, which has evolved larger body size than any other known population of this species. We apply a bulk segregant quantitative trait locus (QTL) mapping approach to four unique crosses between highland Ethiopian and lowland Zambian populations for both thorax length and wing length. Results indicated a persistently variable genetic basis for these evolved traits (with largely distinct sets of QTLs for each cross), and at least a moderately polygenic architecture with relatively strong effects present. We complemented these mapping experiments with population genetic analyses of QTL regions and gene ontology enrichment analysis, generating strong hypotheses for specific genes and functional processes that may have contributed to these adaptive trait changes. Finally, we find that the genetic architectures our QTL mapping results for size traits mirror those from similar experiments on other recently-evolved traits in this species. Collectively, these studies suggest a recurring pattern of polygenic adaptation in this species, in which causative variants do not approach fixation and moderately strong effect loci are present.


2021 ◽  
Author(s):  
Catherine Stark ◽  
Teanna Bautista-Leung ◽  
Joanna Siegfried ◽  
Daniel Herschlag

Cold temperature is prevalent across the biosphere and slows the rates of chemical reactions. Increased catalysis has been predicted to be a general adaptive trait of enzymes to reduced temperature, and this expectation has informed physical models for enzyme catalysis and influenced bioprospecting strategies. To broadly test rate as an adaptive trait to cold, we paired kinetic constants of 2223 enzyme reactions with their organism’s optimal growth temperature (TGrowth) and analyzed trends of rate as a function of TGrowth. These data do not support a prevalent increase in rate in cold adaptation. In the model enzyme ketosteroid isomerase (KSI), there was prior evidence for temperature adaptation from a change in an active site residue that results in a tradeoff between activity and stability. Here, we found that little of the overall rate variation for 20 KSI variants was accounted for by TGrowth. In contrast, and consistent with prior expectations, we observed a correlation between stability and TGrowth across 433 proteins. These results suggest that temperature exerts a weaker selection pressure on enzyme rate than stability and that evolutionary forces other than temperature are responsible for the majority of enzymatic rate variation.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Hikaru Sato ◽  
Juan Santos-González ◽  
Claudia Köhler

Polycomb Repressive Complex 2 (PRC2)-mediated trimethylation of histone H3 on lysine 27 (H3K27me3) and methylation of histone 3 on lysine 9 (H3K9me) are two repressive epigenetic modifications that are typically localized in distinct regions of the genome. For reasons unknown, however, they co-occur in some organisms and special tissue types. In this study, we show that maternal alleles marked by H3K27me3 in the Arabidopsis endosperm were targeted by the H3K27me3 demethylase REF6 and became activated during germination. In contrast, maternal alleles marked by H3K27me3, H3K9me2, and CHG methylation (CHGm) are likely to be protected from REF6 targeting and remained silenced. Our study unveils that combinations of different repressive epigenetic modifications time a key adaptive trait by modulating access of REF6.


2021 ◽  
Author(s):  
John Paul Kennedy ◽  
Giles N Johnson ◽  
Richard F Preziosi ◽  
Jennifer K Rowntree

Many species are expanding beyond their distributional range margins in response to a warming planet. Due to marginal environmental conditions and novel selection pressures, range margins may foster unique genetic adaptations that can better enable species to thrive under the extreme climatic conditions at and beyond their current distributional limits. Neotropical black mangrove (Avicennia germinans) is expanding poleward into temperate salt marsh along Atlantic Florida, USA, with field evidence of adaptive trait shifts within range-margin A. germinans populations. However, whether these adaptive shifts have a genetic basis remains to be answered. We monitored twenty A. germinans maternal cohorts from areas in both the Atlantic Florida range core and margin in a greenhouse common garden with annual temperatures analogous to range-margin conditions. We measured variation in a series of phenotypic traits starting at initial planting of field-collected propagules and continuing until two years development. Maternal cohorts from the Atlantic Florida range margin consistently outperformed those from the range core throughout the experiment. Range-margin cohorts survived in greater numbers, established faster, and were less stressed under winter chilling and sub-zero temperatures that are often reached at the Atlantic range margin, but not within the range core. Range-margin cohorts did not grow taller, but instead invested more into lateral growth and biomass accumulation that presumably reflects adaptation to their colder and open canopy environment. Range-margin cohorts also exhibited leaf traits consistent with greater resource acquisition that may compensate for a shorter growing season and reduced light quality at higher latitude. Synthesis: We confirmed that there is a genetic basis to adaptive trait shifts towards an expanding mangrove range margin. Our results suggest that genetically-based phenotypic differences better enable these range-margin mangroves to thrive within their stressful environment and may facilitate further poleward expansion in the future. In addition, our documentation of adaptive trait variation among maternal cohorts of an ecologically-important mangrove foundation species, quantitative data that is lacking for mangroves, should help inform mangrove restoration initiatives.


Behaviour ◽  
2021 ◽  
pp. 1-38
Author(s):  
Anne Habedank ◽  
Pia Kahnau ◽  
Lars Lewejohann

Abstract In rodents, the T-maze is commonly used to investigate spontaneous alternating behaviour, but it can also be used to investigate preference between goods. However, for T-maze preference tests with mice there is no recommended protocol and researchers frequently report reproduction difficulties. Here, we tried to develop an efficient protocol with female C57BL/6J CrL mice for preference tests. We used two different designs, adapting habituation, cues and trial timing. However, in both experiments mice did not show any preference, although we used goods which we knew mice find rewarding. Instead, they alternated choices indicating that exploratory behaviour overruled preference. We argue that this behavioural strategy has evolved as an adaptive trait in saturated conditions where there is no need to take the reward immediately. Therefore, we deem the T-maze unsuitable for preference testing with the procedures we used here.


2021 ◽  
Author(s):  
Ziqi Ye ◽  
Peter Ryser

Abstract Aims Root aerenchyma, a key adaptive trait to anoxic soils has rarely been integrated into trait-based plant ecology. This study aims to evaluate the relationship between root porosity and root economics-related traits among wetland plants, focusing on the effect of aerenchyma on root tissue density, a central trait in plant economics spectrum.Methods Root porosity, root tissue density with air-space included or excluded (RTD and RTDA), and other root economics-related traits were measured separately for basal and lateral roots of 16 garden-grown Ontario wetland monocots with contrasting root longevities.Results Interspecific variation in root porosity was unrelated to root economics traits and did not differ between species with long-lived or short-lived roots. Consequently, RTDA better differentiated between species with contrasting root longevities than RTD did, consistently both for basal and lateral roots. Root dry matter content (RDMC) accurately predicted RTDA. A principal component analysis showed that in the root adaptive trait space of wetland plants, the first dimension is defined by economics-related traits, the second dimension by lateral root porosity and the ratio of lateral to basal root length, and the third dimension by basal root porosity.Conclusions Interspecific variation in the aerenchyma content is independent of root economics: Wetland plants can construct economically conservative or acquisitive roots of any porosity. Consequently, to consistently express root functional relationships among wetland plant species, root tissue density should be expressed with RTDA, i.e., excluding the air space, or with the more easily measured RDMC.


Sign in / Sign up

Export Citation Format

Share Document