scholarly journals Regulation of nitrogenase activity inAnabaena variabilisby modification of the Fe protein

1989 ◽  
Vol 58 (1) ◽  
pp. 81-86 ◽  
Author(s):  
Sabine Reich ◽  
Peter Böger
1984 ◽  
Vol 224 (3) ◽  
pp. 961-969 ◽  
Author(s):  
T D Paul ◽  
P W Ludden

Adenine nucleotide pools were measured in Rhodospirillum rubrum cultures that contained nitrogenase. The average energy charge [([ATP] + 1/2[ADP])/([ATP] + [ADP] + [AMP])] was found to be 0.66 and 0.62 in glutamate-grown and N-limited cultures respectively. Treatment of glutamate-grown cells with darkness, ammonia, glutamine, carbonyl cyanide m-chlorophenylhydrazone, or phenazine methosulphate resulted in perturbations in the adenine nucleotide pools, and led to loss of whole-cell nitrogenase activity and modification in vivo of the Fe protein. Treatment of N-limited cells resulted in similar changes in adenine nucleotide pools but not enzyme modification. No correlations were found between changes in adenine nucleotide pools or ratios of these pools and switch-off of nitrogenase activity by Fe protein modification in vivo. Phenazine methosulphate inhibited whole-cell activity at low concentrations. The effect on nitrogenase activity was apparently independent of Fe protein modification.


Microbiology ◽  
2011 ◽  
Vol 157 (6) ◽  
pp. 1834-1840 ◽  
Author(s):  
Tiago Toscano Selao ◽  
Tomas Edgren ◽  
He Wang ◽  
Agneta Norén ◽  
Stefan Nordlund

Rhodospirillum rubrum, a photosynthetic diazotroph, is able to regulate nitrogenase activity in response to environmental factors such as ammonium ions or darkness, the so-called switch-off effect. This is due to reversible modification of the Fe-protein, one of the two components of nitrogenase. The signal transduction pathway(s) in this regulatory mechanism is not fully understood, especially not in response to darkness. We have previously shown that the switch-off response and metabolic state differ between cells grown with dinitrogen or glutamate as the nitrogen source, although both represent poor nitrogen sources. In this study we show that pyruvate affects the response to darkness in cultures grown with glutamate as nitrogen source, leading to a response similar to that in cultures grown with dinitrogen. The effects are related to PII protein uridylylation and glutamine synthetase activity. We also show that pyruvate induces de novo protein synthesis and that inhibition of pyruvate formate-lyase leads to loss of nitrogenase activity in the dark.


1997 ◽  
Vol 326 (3) ◽  
pp. 637-640 ◽  
Author(s):  
Faridoon K. YOUSAFZAI ◽  
Robert R. EADY

We have investigated the kinetics of inactivation of Mo-nitrogenase isolated from Klebsiella pneumoniae when it forms an inhibited putative transition-state complex on incubation with ADP and AlF4-. In the presence of excess Kp2 (Fe protein of the Mo-nitrogenase of K. pneumoniae), the kinetics were found to depend on the Mo content of Kp1 (the MoFe protein of Mo-nitrogenase of K. pneumoniae). The residual nitrogenase activity versus time of incubation using Kp1 preparations containing integral, i.e. one or two Mo atoms per molecule of Kp1, were essentially monophasic, but significantly different rates of inactivation were observed. In contrast, the progress curves for preparations of Kp1 with non-integral Mo content were biphasic, suggesting the presence of two discrete catalytically active species of Kp1. The best fit to the observed data was obtained with a two-exponential expression, the amplitude of which was consistent with the Mo content, provided that the fast phase of the reaction was assigned to a Kp1 species containing one, and the slow phase to a species containing two Mo atoms per α2β2 tetramer. This analysis provides the first evidence for the existence of a catalytically active Kp1 species containing a single Mo atom. These data also indicate that MoFe protein which does not have all FeMoco binding sites occupied has an altered conformation compared with a fully loaded protein, and that the Fe protein reacts with these conformations at different rates to form the stable, but inhibited transition-state complex.


1988 ◽  
Vol 256 (2) ◽  
pp. 429-432 ◽  
Author(s):  
R W Miller ◽  
R R Eady

A comparison of the effect of temperature on the reduction of N2 by purified molybdenum nitrogenase and vanadium nitrogenase of Azotobacter chroococcum showed differences in behaviour. As the assay temperature was lowered from 30 degrees C to 5 degrees C N2 remained an effective substrate for V nitrogenase, but not Mo nitrogenase, since the specific activity for N2 reduction by Mo nitrogenase decreased 10-fold more than that of V nitrogenase. Activity cross-reactions between nitrogenase components showed the enhanced low-temperature activity to be associated with the Fe protein of V nitrogenase. The lower activity of homologous Mo nitrogenase components, although dependent on the ratio of MoFe protein to Fe protein, did not equal that of V nitrogenase even under conditions of high electron flux obtained at a 12-fold molar excess of Fe protein.


1988 ◽  
Vol 256 (1) ◽  
pp. 189-196 ◽  
Author(s):  
R R Eady ◽  
T H Richardson ◽  
R W Miller ◽  
M Hawkins ◽  
D J Lowe

1. Nitrogenase activity of a strain of Azotobacter chroococcum lacking the structural genes of Monitrogenase (nifHDK) was associated with a V + Fe-containing protein and an Fe-containing protein [Robson, Eady, Richardson, Miller, Hawkins & Postgate (1986) Nature (London) 322, 388-390; Eady, Robson, Richardson, Miller & Hawkins (1987) Biochem. J. 244, 197-207]. 2. The Fe protein was purified to homogeneity by the criterion of Coomassie Blue staining after electrophoresis in 10% or 17% (w/v) polyacrylamide gels in the presence of SDS. One type of subunit, of Mr 32,000 +/- 2000, was found. 3. The native protein had an Mr of 62,500 +/- 2500 and contained approximately 4 Fe atoms and 4 acid-labile sulphide groups per molecule. The amino acid composition was similar to those of other purified Fe proteins, and, characteristically, tryptophan was absent. The specific activities (nmol of protein/min per mg of protein) when assayed under optimum conditions with the VFe protein from this strain were 1211 for H2 evolution under Ar, 337 for NH3 from N2 formation and 349 for C2H2 reduction. Activity of the Fe protein was O2-labile with a t1/2 of 36 s in air. At low temperatures the dithionite-reduced protein exhibited e.p.r. signals consistent with the presence of both S = 1/2 and S = 3/2 spin states. These signals were similar to those given by other nitrogenase Fe proteins, as were the changes in their line shape that occurred in the presence of MgATP or MgADP. The absorbance spectra showed that an increase in absorption occurred in the visible range on reversible oxidation of the dithionite-reduced protein. The oxidized-minus-reduced epsilon 420 was 6000 M-1.cm-1.


2009 ◽  
Vol 191 (11) ◽  
pp. 3726-3735 ◽  
Author(s):  
Janina Oetjen ◽  
Barbara Reinhold-Hurek

ABSTRACT DraT/DraG-mediated posttranslational regulation of the nitrogenase Fe protein by ADP-ribosylation has been described for a few diazotrophic bacteria belonging to the class Alphaproteobacteria. Here we present for the first time the DraT/DraG system of a betaproteobacterium, Azoarcus sp. strain BH72, a diazotrophic grass endophyte. Its genome harbors one draT ortholog and two physically unlinked genes coding for ADP-ribosylhydrolases. Northern blot analysis revealed cotranscription of draT with two genes encoding hypothetical proteins. Furthermore, draT and draG2 were expressed under all studied conditions, whereas draG1 expression was nitrogen regulated. By using Western blot analysis of deletion mutants and nitrogenase assays in vivo, we demonstrated that DraT is required for the nitrogenase Fe protein modification but not for the physiological inactivation of nitrogenase activity. A second mechanism responsible for nitrogenase inactivation must operate in this bacterium, which is independent of DraT. Fe protein demodification was dependent mainly on DraG1, corroborating the assumption from phylogenetic analysis that DraG2 might be mostly involved in processes other than the posttranslational regulation of nitrogenase. Nitrogenase in vivo reactivation was impaired in a draG1 mutant and a mutant lacking both draG alleles after anaerobiosis shifts and subsequent adjustment to microaerobic conditions, suggesting that modified dinitrogenase reductase was inactive. Our results demonstrate that the DraT/DraG system, despite some differences, is functionally conserved in diazotrophic proteobacteria.


2005 ◽  
Vol 71 (9) ◽  
pp. 5637-5641 ◽  
Author(s):  
Giseli Klassen ◽  
Emanuel M. Souza ◽  
M. Geoffrey Yates ◽  
Liu Un Rigo ◽  
Roberta M. Costa ◽  
...  

ABSTRACT Nitrogenase activity in several diazotrophs is switched off by ammonium and reactivated after consumption. The signaling pathway to this system in Azospirillum brasilense is not understood. We show that ammonium-dependent switch-off through ADP-ribosylation of Fe protein was partial in a glnB mutant of A. brasilense but absent in a glnB glnZ double mutant. Triggering of inactivation by anaerobic conditions was not affected in either mutant. The results suggest that glnB is necessary for full ammonium-dependent nitrogenase switch-off in A. brasilense.


Sign in / Sign up

Export Citation Format

Share Document