scholarly journals Incubation ofStreptococcus uberiswith extracellular matrix proteins enhances adherence to and internalization into bovine mammary epithelial cells

1999 ◽  
Vol 178 (1) ◽  
pp. 81-85 ◽  
Author(s):  
Raul A Almeida ◽  
Douglas A Luther ◽  
Stephen P Oliver
1994 ◽  
Vol 107 (10) ◽  
pp. 2919-2929
Author(s):  
E. Lucassen ◽  
A.C. Andres ◽  
E. Reichmann ◽  
A. Entwistle ◽  
M. Noble

Overexpression of the proto-oncogene product, p185neuN, in a non-tumorigenic mammary epithelial line (31E) facilitates aspects of lactogenic differentiation. Formation of branching cords and induction of beta-casein synthesis by 31E cells normally require co-culture of these cells with fibroblasts, or the presence of collagen or fibronectin. In contrast, 31E cells expressing p185neuN spontaneously form branching cords when grown on tissue culture plastic and can synthesize beta-casein in the absence of exogenous substrates or feeder layers. Under these conditions, the cells deposit laminin and fibronectin, indicating a possible role for p185neuN in the deposition of extracellular matrix proteins. Overexpression of the corresponding oncogene product, p185neuT, has markedly different effects. Expression of p185neuT does not facilitate the formation of branching cords or the synthesis of beta-casein when grown on tissue culture plastic, although these cells do deposit laminin and fibronectin. Confocal microscopy indicates a significant difference in the distribution of laminin and fibronectin in 31E cells expressing p185neuT compared to those expressing p185neuN. The effects of p185neuN and p185neuT expression on cell transformation depend on cell type. Expression of both p185neuN and p185neuT increases anchorage-independent growth of 31E cells, but only p185neuT induces anchorage-independent growth of NIH 3T3 fibroblasts. This lineage specificity in the action of p185neuN may be related to observations that overexpression of p185c-erbB-2 (the human homologue of p185neuN) is only associated with the development of human epithelial cancers. The effects of p185neuN on laminin deposition by 31E cells may be relevant to the transforming ability of p185neuN, since laminin can induce anchorage-independent growth of mouse mammary cells. These results suggest that p185neuN and p185neuT could exert their effects on differentiation and transformation of mammary epithelial cells in part by promoting the deposition of extracellular matrix proteins.


2001 ◽  
Vol 81 (2) ◽  
pp. 285-287 ◽  
Author(s):  
F. Cheli ◽  
A. Baldi ◽  
V. Dell’Orto ◽  
B. Zavizion ◽  
I. Politis

Protein and plasminogen activator (PA) production by bovine mammary epithelial cells cultured on inserts and the effect of calcium were studied. The cells cultured on inserts coated with a bovine extracellular matrix established a stable trans-epithelial resistance, and secreted apically αs1-casein and PA. Extracellular calcium increased (P < 0.01) αs1-casein and total proteins, but not PA activity. Key words: Bovine mammary epithelial cells, inserts, differentiation


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1183
Author(s):  
Mst Mamuna Sharmin ◽  
Md Aminul Islam ◽  
Itsuki Yamamoto ◽  
Shin Taniguchi ◽  
Shinichi Yonekura

The conservation of mammary gland physiology by maintaining the maximum number of mammary epithelial cells (MECs) is of the utmost importance for the optimum amount of milk production. In a state of negative energy balance, palmitic acid (PA) reduces the number of bovine MECs. However, there is no effective strategy against PA-induced apoptosis of MECs. In the present study, 5-aminolevulinic acid (5-ALA) was established as a remedial agent against PA-induced apoptosis of MAC-T cells (an established line of bovine MECs). In PA-treated cells, the apoptosis-related genes BCL2 and BAX were down- and upregulated, respectively. The elevated expression of major genes of the unfolded protein response (UPR), such as CHOP, a proapoptotic marker (C/EBP homologous protein), reduced the viability of PA-treated MAC-T cells. In contrast, 5-ALA pretreatment increased and decreased BCL2 and BAX expression, respectively. Moreover, cleaved caspase-3 protein expression was significantly reduced in the 5-ALA-pretreated group in comparison with the PA group. The downregulation of major UPR-related genes, including CHOP, extended the viability of MAC-T cells pretreated with 5-ALA and also reduced the enhanced intensity of the PA-induced expression of phospho-protein kinase R-like ER kinase. Moreover, the enhanced expression of HO-1 (antioxidant gene heme oxygenase) by 5-ALA reduced PA-induced oxidative stress (OxS). HO-1 is not only protective against OxS but also effective against ER stress. Collectively, these findings offer new insights into the protective effects of 5-ALA against PA-induced apoptosis of bovine MECs.


2019 ◽  
Vol 86 (2) ◽  
pp. 177-180
Author(s):  
Jacqueline P. Kurz ◽  
Mark P. Richards ◽  
Matthew Garcia ◽  
Zhongde Wang

AbstractThis Research Communication addresses the hypothesis that exogenously administered phospholipase A2 (PLA2) affects the inflammatory responses of bovine mammary epithelial cells (bMEC) in vitro with the aim of providing preliminary justification of investigation into the uses of exogenously administered PLA2 to manage or treat bovine mastitis. Primary bMEC lines from 11 lactating Holstein dairy cows were established and the expression of 14 pro-inflammatory genes compared under unchallenged and lipopolysaccharide (LPS)-challenged conditions, with and without concurrent treatment with bovine pancreatic PLA2G1B, a secreted form of PLA2. No differences in the expression of these genes were noted between PLA2-treated and untreated bMEC under unchallenged conditions. Following LPS challenge, untreated bMEC exhibited significant downregulation of CXCL8, IL1B, CCL20, and CXCL1. In contrast, PLA2-treated bMEC exhibited significant downregulation of IL1B and CCL20 only. These findings indicate that exogenous PLA2 affects the expression of some pro-inflammatory factors in immune-stimulated bMEC, but does not influence the constitutive expression of these factors. Further investigation of the influence of exogenous PLA2 in the bovine mammary gland is justified.


Sign in / Sign up

Export Citation Format

Share Document