Butyrate induces reactive oxygen species production and affects cell cycle progression in human gingival fibroblasts

2012 ◽  
Vol 48 (1) ◽  
pp. 66-73 ◽  
Author(s):  
M.-C. Chang ◽  
Y.-L. Tsai ◽  
Y.-W. Chen ◽  
C.-P. Chan ◽  
C.-F. Huang ◽  
...  
2006 ◽  
Vol 26 (12) ◽  
pp. 4701-4711 ◽  
Author(s):  
Courtney G. Havens ◽  
Alan Ho ◽  
Naohisa Yoshioka ◽  
Steven F. Dowdy

ABSTRACT Proliferating cells have a higher metabolic rate than quiescent cells. To investigate the role of metabolism in cell cycle progression, we examined cell size, mitochondrial mass, and reactive oxygen species (ROS) levels in highly synchronized cell populations progressing from early G1 to S phase. We found that ROS steadily increased, compared to cell size and mitochondrial mass, through the cell cycle. Since ROS has been shown to influence cell proliferation and transformation, we hypothesized that ROS could contribute to cell cycle progression. Antioxidant treatment of cells induced a late-G1-phase cell cycle arrest characterized by continued cellular growth, active cyclin D-Cdk4/6 and active cyclin E-Cdk2 kinases, and inactive hyperphosphorylated pRb. However, antioxidant-treated cells failed to accumulate cyclin A protein, a requisite step for initiation of DNA synthesis. Further examination revealed that cyclin A continued to be ubiquitinated by the anaphase promoting complex (APC) and to be degraded by the proteasome. This antioxidant arrest could be rescued by overexpression of Emi1, an APC inhibitor. These observations reveal an intrinsic late-G1-phase checkpoint, after transition across the growth factor-dependent G1 restriction point, that links increased steady-state levels of endogenous ROS and cell cycle progression through continued activity of APC in association with Cdh1.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Po-Chih Hsu ◽  
Ching-Feng Cheng ◽  
Po-Chun Hsieh ◽  
Yi-Hsuan Chen ◽  
Chan-Yen Kuo ◽  
...  

Background. Oral cancer belongs to the class of head and neck cancers and can be life threatening if not diagnosed and treated early. Activation of cell death via apoptosis or reactive oxygen species (ROS) accumulation and inhibition of cell cycle progression, migration, and epithelial-to-mesenchymal transition (EMT) may be a good strategy to arrest the development of oral cancer. In this study, we analyzed the possible action of chrysophanol isolated from the rhizomes of Rheum palmatum on the oral cancer cell lines FaDu (human pharynx squamous cell carcinoma) and SAS (human tongue squamous carcinoma) by investigating whether chrysophanol could influence cell death. Method. Cell viability was measured by using the MTT assay. For the detection of apoptosis, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining and subG1 population analysis were used. We also examined cell cycle progression and ROS levels by flow cytometry. Additionally, the expression of p53, p21, procaspase 3, cyclin D1, CDK4, cdc2, CDK2, E-cadherin, vimentin, and PCNA was evaluated by western blotting. Conclusion. Chrysophanol has an anticancer effect on FaDu and SAS cell lines. There is an increase in subG1 accumulation, ROS production, and cell cycle G1 arrest after treatment with chrysophanol. On the other hand, chrysophanol inhibited cell migration/metastasis and EMT. We proposed that chrysophanol may be a good candidate compound on oral cancer treatment in the further.


2019 ◽  
Vol 68 (3) ◽  
pp. 869-875
Author(s):  
Jana Špačková ◽  
Daniela Oliveira ◽  
Marek Puškár ◽  
Ivana Ďurovcová ◽  
Katarína Gaplovská-Kyselá ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document