ep4 receptor
Recently Published Documents


TOTAL DOCUMENTS

339
(FIVE YEARS 47)

H-INDEX

43
(FIVE YEARS 5)

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Sijing Liu ◽  
Qiong Wang ◽  
Ziyi Li ◽  
Lei Ma ◽  
Ting Li ◽  
...  

Low back pain (LBP) is the primary cause of disability globally. There is a close relationship between Modic changes or endplate defects and LBP. Endplates undergo ossification and become highly porous during intervertebral disc (IVD) degeneration. In our study, we used a mouse model of vertebral endplate degeneration by lumbar spine instability (LSI) surgery. Safranin O and fast green staining and μCT scan showed that LSI surgery led to endplate ossification and porosity, but the endplates in the sham group were cartilaginous and homogenous. Immunofluorescent staining demonstrated the innervation of calcitonin gene-related peptide- (CGRP-) positive nerve fibers in the porous endplate of LSI mice. Behavior test experiments showed an increased spinal hypersensitivity in LSI mice. Moreover, we found an increased cyclooxygenase 2 (COX2) expression and an elevated prostaglandin E2 (PGE2) concentration in the porous endplate of LSI mice. Immunofluorescent staining showed the colocalization of E-prostanoid 4 (EP4)/transient receptor potential vanilloid 1 (TRPV1) and CGRP in the nerve endings in the endplate and in the dorsal root ganglion (DRG) neurons, and western blotting analysis demonstrated that EP4 and TRPV1 expression significantly increased in the LSI group. Our patch clamp study further showed that LSI surgery significantly enhanced the current density of the TRPV1 channel in small-size DRG neurons. A selective EP4 receptor antagonist, L161982, reduced the spinal hypersensitivity of LSI mice by blocking the PGE2/EP4 pathway. In addition, TRPV1 current and neuronal excitability in DRG neurons were also significantly decreased by L161982 treatment. In summary, the PGE2/EP4 pathway in the porous endplate could activate the TRPV1 channel in DRG neurons to cause spinal hypersensitivity in LSI mice. L161982, a selective EP4 receptor antagonist, could turn down the TRPV1 current and decrease the neuronal excitability of DRG neurons to reduce spinal pain.


2021 ◽  
Vol 22 (14) ◽  
pp. 7535
Author(s):  
Hye-Soo Park ◽  
Seunga Choi ◽  
Yong-Woo Back ◽  
Kang-In Lee ◽  
Han-Gyu Choi ◽  
...  

Prostaglandin E2 (PGE2) is an important biological mediator involved in the defense against Mycobacterium tuberculosis (Mtb) infection. Currently, there are no reports on the mycobacterial components that regulate PGE2 production. Previously, we have reported that RpfE-treated dendritic cells (DCs) effectively expanded the Th1 and Th17 cell responses simultaneously; however, the mechanism underlying Th1 and Th17 cell differentiation is unclear. Here, we show that PGE2 produced by RpfE-activated DCs via the MAPK and cyclooxygenase 2 signaling pathways induces Th1 and Th17 cell responses mainly via the EP4 receptor. Furthermore, mice administered intranasally with PGE2 displayed RpfE-induced antigen-specific Th1 and Th17 responses with a significant reduction in bacterial load in the lungs. Furthermore, the addition of optimal PGE2 amount to IL-2-IL-6-IL-23p19-IL-1β was essential for promoting differentiation into Th1/Th17 cells with strong bactericidal activity. These results suggest that RpfE-matured DCs produce PGE2 that induces Th1 and Th17 cell differentiation with potent anti-mycobacterial activity.


Author(s):  
Margaret L. Musser ◽  
Austin K. Viall ◽  
Rachel L. Phillips ◽  
Olufemi Fasina ◽  
Chad M. Johannes

2021 ◽  
Author(s):  
Gaojian Wang ◽  
Yaping Zhang ◽  
Nianqiang Hu ◽  
Qinxue Liu ◽  
Fengjie Ma ◽  
...  

Abstract Background: Mesenchymal stem cell have shown therapeutic effect on acute lung injury, MSC could be activated when added to inflammatory environment and in turn suppress inflammation, yet the mechanism is complex and not understood. Methods: To determine the effect of MSC on ALI and alveolar macrophage activation, MSCs were administered to ALI mice and co-cultured with activated MH-S cells (alveolar macrophage cell line). To find the genes critical for MSC’s immunosuppressive effects, rest and activated MSCs induced by inflammatory MH-S cells were harvested for RNA-seq. To prove that PGE2 participates in the immunosuppressive effects of MSC, COX2 inhibitor and PGE2 receptor antagonist were added to the co-culture system and administrated to ALI mice. Results: The intratracheal administration of MSCs attenuated ALI and suppressed alveolar macrophages activation in vivo, the activation of MH-S cells was also significantly reduced after co-culturing with MSCs in vitro. The RNA-seq data of rest and activated MSCs suggested that the Ptgs2 gene may play an important role in MSC exerting immunosuppressive effects. Correspondingly, we found that the COX2 protein and PGE2 released by activated MSCs were increased dramatically after co-culturing with MH-S. The use of COX2 inhibitor NS-398 restrained the secretion of PGE2 and reversed the suppressive effect on macrophages activation of MSCs in vitro. Furthermore, GW627368X, a selective antagonist of PGE2 receptor (EP4 receptor), also reversed the inhibitory effects of MSCs on alveolar macrophages and their protective effects on ALI mice.Conclusions: MSC attenuate ALI partly through suppressing alveolar macrophage activation via PGE2 binding to EP4 receptor.


2021 ◽  
Author(s):  
Ulrike Ries Feddersen ◽  
Sebastian Kjærgaard Hendel ◽  
Mark Alexander Berner-Hansen ◽  
Thomas Andrew Jepps ◽  
Niels Bindslev ◽  
...  

Abstract BackgroundAberrations in cyclooxygenase and lipoxygenase (LOX) pathways in non-neoplastic, normal appearing mucosa from patients with colorectal neoplasia (CRN), could hypothetically qualify as predisposing CRN-markers. To test this hypothesis, biopsies were obtained during colonoscopy from macroscopically normal colonic mucosa from patients with and without CRN. Prostaglandin E2 (PGE2) receptors, EP1-4, were examined in Ussing-chambers by exposing biopsies to selective EP receptor agonists, antagonists and PGE2. Furthermore, mRNA expression of EP receptors, prostanoid synthases and LOX enzymes were evaluated using qPCR technology.Results Data suggest that PGE2 binds to high and low affinity EP receptors. In particular, PGE2 demonstrated EP4 receptor potency in the low nanomolar range. Similar results were detected using EP2 and EP4 agonists. In CRN patients, mRNA-levels were higher for EP1 and EP2 receptors and for enzymes prostaglandin-I synthase, 5-LOX, 12-LOX and 15-LOX. ConclusionIn conclusion, normal appearing colonic mucosa from CRN patients demonstrates deviating expression in eicosanoid pathways, indicating a likely predisposition for early CRN development. Moreover, PGE2 potency activates high affinity EP4 receptor subtypes, supporting relevance of testing EP4 antagonists in colorectal cancer management.


Author(s):  
Hye-Soo Park ◽  
Seunga Choi ◽  
Yong Woo Back ◽  
Kang-In Lee ◽  
Han-Gyu Choi ◽  
...  

Prostaglandin E2 (PGE2) is an important biological mediator involved in the defense against Mycobacterium tuberculosis (Mtb) infection. Currently, there are no reports on the mycobacterial components that regulate PGE2 production. Previously, we have reported that RpfE-treated dendritic cells (DCs) effectively expanded the Th1 and Th17 cell responses simultaneously; however, the mechanism underlying Th1 and Th17 cell differentiation is unclear. Here, we show that PGE2 produced by RpfE-activated DCs via the MAPK and cyclooxygenase 2 signaling pathways induces Th1 and Th17 cell responses mainly via the EP4 receptor. Furthermore, mice administered intranasally with PGE2 displayed RpfE-induced antigen-specific Th1 and Th17 responses with a significant reduction in bacterial load in the lungs. Furthermore, the addition of optimal PGE2 amount to IL-2-IL-6-IL-23p19-IL-1β was essential for promoting differentiation into Th1/Th17 cells with strong bactericidal activity. These results suggest that RpfE-matured DCs produce PGE2 that induces Th1 and Th17 cell differentiation with potent anti-mycobacterial activity.


Author(s):  
Sheridan J.C. Baker ◽  
Glen Van Der Kraak
Keyword(s):  

2021 ◽  
pp. 105019
Author(s):  
Kun Liu ◽  
Wei Mao ◽  
Bo Liu ◽  
Tingting Li ◽  
Xinfei Wang ◽  
...  

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Aleksandra Majchrzak-Celińska ◽  
Julia O. Misiorek ◽  
Nastassia Kruhlenia ◽  
Lukasz Przybyl ◽  
Robert Kleszcz ◽  
...  

Abstract Background Glioblastoma (GBM) is the deadliest and the most common primary brain tumor in adults. The invasiveness and proliferation of GBM cells can be decreased through the inhibition of Wnt/β-catenin pathway. In this regard, celecoxib is a promising agent, but other COXIBs and 2,5-dimethylcelecoxib (2,5-DMC) await elucidation. Thus, the aim of this study was to analyze the impact of celecoxib, 2,5-DMC, etori-, rofe-, and valdecoxib on GBM cell viability and the activity of Wnt/β-catenin pathway. In addition, the combination of the compounds with temozolomide (TMZ) was also evaluated. Cell cycle distribution and apoptosis, MGMT methylation level, COX-2 and PGE2 EP4 protein levels were also determined in order to better understand the molecular mechanisms exerted by these compounds and to find out which of them can serve best in GBM therapy. Methods Celecoxib, 2,5-DMC, etori-, rofe- and valdecoxib were evaluated using three commercially available and two patient-derived GBM cell lines. Cell viability was analyzed using MTT assay, whereas alterations in MGMT methylation level were determined using MS-HRM method. The impact of COXIBs, in the presence and absence of TMZ, on Wnt pathway was measured on the basis of the expression of β-catenin target genes. Cell cycle distribution and apoptosis analysis were performed using flow cytometry. COX-2 and PGE2 EP4 receptor expression were evaluated using Western blot analysis. Results Wnt/β-catenin pathway was attenuated by COXIBs and 2,5-DMC irrespective of the COX-2 expression profile of the treated cells, their MGMT methylation status, or radio/chemoresistance. Celecoxib and 2,5-DMC were the most cytotoxic. Cell cycle distribution was altered, and apoptosis was induced after the treatment with celecoxib, 2,5-DMC, etori- and valdecoxib in T98G cell line. COXIBs and 2,5-DMC did not influence MGMT methylation status, but inhibited COX-2/PGE2/EP4 pathway. Conclusions Not only celecoxib, but also 2,5-DMC, etori-, rofe- and valdecoxib should be further investigated as potential good anti-GBM therapeutics.


2021 ◽  
Vol 22 (9) ◽  
pp. 4297
Author(s):  
Matthew Thomas Ferreira ◽  
Juliano Andreoli Miyake ◽  
Renata Nascimento Gomes ◽  
Fábio Feitoza ◽  
Pollyana Bulgarelli Stevannato ◽  
...  

Prostaglandin E2 (PGE2) is known to increase glioblastoma (GBM) cell proliferation and migration while cyclooxygenase (COX) inhibition decreases proliferation and migration. The present study investigated the effects of COX inhibitors and PGE2 receptor antagonists on GBM cell biology. Cells were grown with inhibitors and dose response, viable cell counting, flow cytometry, cell migration, gene expression, Western blotting, and gelatin zymography studies were performed. The stimulatory effects of PGE2 and the inhibitory effects of ibuprofen (IBP) were confirmed in GBM cells. The EP2 and EP4 receptors were identified as important mediators of the actions of PGE2 in GBM cells. The concomitant inhibition of EP2 and EP4 caused a significant decrease in cell migration which was not reverted by exogenous PGE2. In T98G cells exogenous PGE2 increased latent MMP2 gelatinolytic activity. The inhibition of COX1 or COX2 caused significant alterations in MMP2 expression and gelatinolytic activity in GBM cells. These findings provide further evidence for the importance of PGE2 signalling through the EP2 and the EP4 receptor in the control of GBM cell biology. They also support the hypothesis that a relationship exists between COX1 and MMP2 in GBM cells which merits further investigation as a novel therapeutic target for drug development.


Sign in / Sign up

Export Citation Format

Share Document