Accumulation of the Recombinant Factor VIIa in Rat Bone: Importance of the Gla-Domain and Relevance to Factor IX, another Vitamin K-Dependent Clotting Factor

1993 ◽  
Vol 73 (3) ◽  
pp. 127-132 ◽  
Author(s):  
Mads Krogsgaard Thomsen ◽  
Peter Wildgoose ◽  
Povl Nilsson ◽  
Ulla Hedner
1996 ◽  
Vol 75 (01) ◽  
pp. 070-075 ◽  
Author(s):  
E G C Wojcik ◽  
P Simioni ◽  
M v d Berg ◽  
A Girolami ◽  
R M Bertina

SummaryWe have previously described a genetic factor IX variant (Cys18→Arg) for which we demonstrated that it had formed a heterodimer with armicroglobulin through formation of a disulphide bond with the remaining free cysteine residue of the disrupted disulphide bond in the Gla-domain of factor IX. Recently, we observed a similar high molecular weight complex for a genetic protein C variant (Arg-1→Cys). Both the factor IX and the protein C variants have a defect in the calcium induced conformation. In this study we show that the aminoterminus of this protein C variant is prolonged with one amino acid, cysteine. This protein C variant, as well as protein C variants with Arg9→Cys and Ser12→Cys mutations which also carry a free cysteine residue, are shown to be present in plasma as a complex with α1-microglobulin. A prothrombin variant with a Tyr44→Cys mutation, had not formed such a complex. Furthermore, complexes between normal vitamin K-dependent clotting factors and α1-microglobulin were shown to be present in plasma at low concentrations. The data suggest that the presence of an unpaired cysteine residue in the propeptide or the N-terminal half of the Gla-domain has strongly promoted the formation of a complex with α1-microglobulin in the variants.


1987 ◽  
Author(s):  
K L Berkner ◽  
S J Busby ◽  
J Gambee ◽  
A Kumar

The vitamin K-dependent plasma proteins demonstrate remarkable similarities in their structures: all have multiple domains in common and extensive homology is observed within many of these domains. In order to investigate the structure-function relationship of these proteins, we have interchanged domains of one protein (factor IX) with that of another (factor VII) and have compared the expression of these fusion proteins with recombinant and native factors IX and VII. Oligonucleotide-directed mutagenesis was used to generate four fusion proteins: factor IX/VII-1, which contains the factor IX leader and gla domain fused to the growth factor and serine protease of factor VII; factor VII/IX-1, a reciprocal fusion protein of factor IX/VII-1; factor IX/VII-2, which contains the factor IX leader adjoined to the mature factor VII protein sequence; and factor VII/IX-2, the reciprocal fusion protein of factor IX/VII-2. The cDNAs encoding all four proteins were cloned into mammalian expression vectors, and to date three of these (factors IX/VII-1, 2 and VII/IX-1) have been transfected into baby hamster kidney (BHK) cells or 293 cells and characterized. Factors IX/VII-1 and VII/IX-1 were both secreted at levels comparable to recombinant factors IX and VII. The factor IX/VII-1 was identical in molecular weight to native or recombinant factor VII (i.e., 53 K). Factor VII/IX-1 was expressed as two proteins with molecular weights around 68 kd, as observed with recombinant factor IX. The factor IX/VII-1 protein has been purified to homogeneity and has been found to possess factor VII biological activity, but at a specific activity approximately 20% that of plasma factor VII. Thus, the gla domain of one clotting factor is capable of directing the activation of another and of generating biologically active protein. In contrast, no activity was observed with the factor IX/VII-2 fusion protein, indicating that there are limits to the interchanges which can generate functional blood clotting factors.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4077-4077
Author(s):  
Alaa A. Muslimani ◽  
Harneet K. Walia ◽  
Manmeet S. Ahluwalia ◽  
H. L. Daneschvar ◽  
Hamed A. Daw

Abstract A 78-year old female with a history of atrial fibrillation (AF) presented to our institution with complaints of hematuria, epistaxis, hematochezia, hematemesis and fever. She was on anticoagulation with coumadin therapy for AF and had been recently started on levofloxacin for a urinary tract infection. On examination her pulse rate was 110/minute and blood pressure was 80/40 mm Hg. Investigations revealed hemoglobin of 9.4 g/dl, a hematocrit of 27.8 %, prothrombin time (PT) > 40 and international normalized ratio (INR) >10. She was given intravenous fluids to correct hypotension, fresh frozen plasma (FFP) and vitamin K to correct the coagulopathy. She developed acute renal failure and respiratory failure requiring intubation. Over the period of first week, patient had received a total of 26 units of FFPs, 5 units of cryoprecipitate, 17 units of packed red blood cells and multiple doses of Vitamin K without any improvement of her coagulopathy. She developed disseminated intravascular coagulation (Platelet 42,000/nl, D-Dimer 4032ng/l, fibrinogen degradation products >40 mg/l, fibrinogen 157 mg/dl) and her prognosis appeared poor. She also received 18 units of platelets and 2500 units of Autoplex T (anti-inhibitor coagulant complex), however her INR was persistently >10 and she continued to bleed. Then patient was given recombinant factor VIIa (RF VIIa) at dose of 90 mg/kg and she responded well to single dose of RF VIIa and cessation of her bleeding was noticed within two hours. Repeat coagulation studies showed PT of 13.1 and INR of 1.2. Subsequently patient was extubated, her renal failure reversed and she was discharged home in a stable condition. Originally used for treatment of bleeding in patients with hemophila, rF VIIa, a single chain protease has been used in patients with serious and complicated coagulation defects to arrest or to prevent bleeding. The mechanism of action of rF VIIa remains unclear. It has been suggested that rF VIIa, when administered leads to saturation of tissue factor and this leads to generation of thrombin via the factor Xa. There is evidence that rFVIIa can generate thrombin independently of above pathway. In view of its potent prohemostatic effect, rF VIIa appears to be a promising agent that can be used for application in patients with life-threatening bleeding, in whom all other hemostatic treatments have failed as seen in our patient. However at present time it is not completely clear at what stage recombinant factor VIIa should be administered. Since the efficacy and safety of recombinant factor VIIa have not been established in randomized controlled studies, it may be argued that the safest approach is to administer the agent only if all other treatment has failed. However, if the agent is given too late, ongoing bleeding and transfusion may have resulted in such a derangement of the coagulation system that the drug is less effective. Further studies comparing early versus late administration of rF VIIa are needed. While we await the result of these studies and until more information is available on the safety of rFVIIa, its use in our view should be restricted to life-threatening situations.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3088-3088 ◽  
Author(s):  
David Gailani ◽  
Stephen B. Smith ◽  
Sayeh Agah ◽  
S. Paul Bajaj

Abstract During blood coagulation, the plasma zymogen factor IX (fIX) is converted to the active protease factor Ixaβ (fIXaβ). The severe bleeding disorder associated with deficiency of fIX (hemophilia B) attests to the importance of this protein in hemostasis. Conversion of fIX to fIXaβ requires two proteolytic cleavages after Arg145 and Arg180, releasing an activation peptide. This process is mediated by the proteases factor VIIa (fVIIa) and factor XIa (fXIa). FVIIa in complex with tissue factor initially cleaves fIX after Arg145 forming an intermediate, factor IXα (fIXα), which is then cleaved after Arg180 to form fIXaβ. Western blots of activation time courses demonstrate fIXα accumulation during this process, indicating cleavage at Arg180 is rate limiting. In contrast, little intermediate accumulation occurs during fIX activation by fXIa. Previously, we showed that fXIa also cleaves fIX initially after Arg145, generating fIXα (Smith et al., J. Biol. Chem.283;6696:2008). To account for the lack of intermediate accumulation, then, the subsequent cleavage after Arg180 must occur at least as rapidly as the initial cleavage. We examined the relative rates of conversion of fIX, fIXα, and the alternative intermediate factor IXaα (fIXaα - cleaved after Arg180) to fIXaβ by fXIa. FIXα or fIXaα were prepared from tritium-labeled fIX by incubation with fXIa-Pro192 (discussed below) or Russell’s Viper Venom protease, respectively, and purified by anion exchange chromatography. Conversion to fIXaβ was determined by measuring release of the tritiated activation peptide. FXIa converted fIX to fIXaβ with a kcat of 29.4 ± 0.4/min, a value reflecting cleavage at both activation sites. Kcat for conversion of fIXα and fIXaα to fIXaβ were 29.9 ± 0.5 and 30.0 ± 1.0/min, respectively. The rate of conversion of fIX to fIXα, estimated by measuring tritiated activation products separated by SDS-PAGE, was 30.0 ± 0.4/min. Recently, we showed that amino acid substitutions in fXIa for the conserved active site residue Gly193 (chymotrypsin numbering) decreased kcat for fIX activation 7–1000 fold, with residues with long branched side-chains having the greatest effect (Schmidt et al. Biochemistry47;1326:2008). Gly193 substitutions had a modestly larger detrimental effect (1.2–1.5 fold) on cleavage of fIX after Arg180 compared to Arg145 that was associated with varying degrees of fIXα accumulation. Similar effects were noted with substitutions for the adjacent residue Lys192. FXIa with Pro192 cleaved fIX after Arg180 >10-fold more slowly than after Arg145, generating fIXα with little subsequent conversion to fIXaβ. Cumulatively, these data support the premise that the rates for the two sequential reactions required for normal fIX activation by fXIa are comparable. Therefore, perturbations causing a greater effect on cleavage after Arg180 compared to Arg145, even if relatively small, result in fIXα accumulation. Initial recognition of fIX by fXIa involves substrate binding exosites distinct from the enzyme active site. At least one exosite appears to be located in the fXIa third apple (A3) domain, and may interact with an epitope on the fIX Ca2+-binding Gla-domain. The rate of fIX activation to fIXaβ by fXIa was significantly reduced in the presence of an antibody to the fXIa A3 domain or by mutations in the A3 domain. Similarly, rates of activation were decreased in the absence of Ca2+, in the presence of an antibody to the fIX Gla-domain, or when fIX with a decarboxylated Gla-domain was the substrate. In all cases, significant fIXα accumulation was noted in time courses, indicating that interfering with this particular substrate-exosite interaction has a significantly greater effect on cleavage after Arg180 than after Arg145. These findings raise the possibility that the exosite on fXIa A3 plays a larger role in conversion of fIXα to fIXaβ than in initial fIX conversion to fIXα, and are consistent with the possibility, recently proposed by Sinha et al. (Biochemistry46;9830:2007), that a second fIX binding exosite is present on fXIa.


1995 ◽  
Vol 311 (3) ◽  
pp. 753-759 ◽  
Author(s):  
E G C Wojcik ◽  
M van den Berg ◽  
I K van der Linden ◽  
S R Poort ◽  
R Cupers ◽  
...  

Factor IX Zutphen is a variant factor IX molecule isolated from the blood of a patient with severe haemophilia B. The molecular defect in factor IX Zutphen is a Cys18-->Arg mutation as a result of a T-->C transition at residue 6427 of the factor IX gene of the patient. The mutation disrupts the disulphide bond in the Gla-domain between Cys18 and Cys23. The remaining free cysteine residue results in the formation of a 95 kDa complex with alpha 1-microglobulin through an intermolecular disulphide bond. The same complex circulates at high levels in plasma of carriers of the mutation. The variant molecule has a calcium-binding defect, which is shown not to be caused by incomplete gamma-carboxylation. Factor IX Zutphen can not bind to phospholipids and can not be activated by factor XIa or by factor VIIa-tissue factor complex. Two sequential metal ion-dependent conformational transitions (factor IX-->factor IX′-->factor IX*) have been proposed for human factor IX [Liebman (1987) J. Biol. Chem. 262, 7605-7612], based upon the metal ion requirements for binding to anti-factor IX:Mg(II) antibodies, which are specific for the factor IX′ conformation, and anti-factor IX:Ca(II) antibodies, which are specific for the factor IX* conformation. We used these conformation-specific antibodies, and antibodies raised against a synthetic peptide corresponding to residues 35-50 of human factor IX [anti-factor IX(35-50)] to study the metal ion-induced conformation of factor IX Zutphen. The disruption of the disulphide bond in the Gla-domain, maybe in combination with the complex with alpha 1-microglobulin, destabilized the factor IX′ conformation. The formation of the factor IX* conformation was prevented independent of the presence of alpha 1-microglobulin. The disulphide bond in the Gla-domain is therefore essential for the calcium-dependent conformation and function of factor IX.


1999 ◽  
Vol 81 (02) ◽  
pp. 245-249 ◽  
Author(s):  
Gerhard Cvirn ◽  
Wolfgang Muntean ◽  
Siegfried Gallistl

SummaryRecombinant factor VIIa (rVIIa) has been reported to be clinically effective and safe in haemophilic patients with inhibitor antibodies. Compared to activated prothrombin complex concentrates the risk of thrombotic complications seems to be very low after rVIIa administration. Determination of free thrombin generation has been shown to identify hypercoagulability. Therefore, free thrombin and prothrombinase activity (Xa generation) were assessed after extrinsic activation of rVIIa supplemented factor VIII and factor IX deficient plasma. Free thrombin generation was also determined after supplementation of (activated) prothrombin complex concentrates. Addition of 150 U rVIIa/ml shortened the clotting times markedly in control, factor VIII, and factor IX deficient plasma. In contrast, free thrombin and Xa generation were not different in the absence or presence of 150 U rVIIa/ml. Addition of (activated) prothrombin complex concentrates resulted in a marked increase of free thrombin generation in all investigated plasmas. Although in vitro studies cannot reflect specific clinical circumstances our results support the notion that rVIIa does not induce a hypercoagulable state as sporadically observed after administration of (activated) prothrombin complex concentrates.


2004 ◽  
Vol 100 (3) ◽  
pp. 722-730 ◽  
Author(s):  
Harold R. Roberts ◽  
Dougald M. Monroe ◽  
Miguel A. Escobar ◽  
Richard B. Weiskopf

The revised model of coagulation has implications for therapy of both hemorrhagic and thrombotic disorders. Of particular interest to anesthesiologists is the management of clotting abnormalities before, during, and after surgery. Most hereditary and acquired coagulation factor deficiencies can be managed by specific replacement therapy using clotting factor concentrates. Specific guidelines have also been developed for perioperative management of patients using anticoagulant agents that inhibit platelet or coagulation factor functions. Finally, recombinant factor VIIa has been used off-label as a hemostatic agent in some surgical situations associated with excessive bleeding that is not responsive to conventional therapy.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4057-4057
Author(s):  
Robert A. Campbell ◽  
Thomas H. Fischer ◽  
Alisa S. Wolberg

Abstract The anti-bleeding therapy, recombinant factor VIIa (rFVIIa), is thought to bind to the platelet’s surface and increase thrombin generation in hemophilia. However, high plasma levels of rFVIIa are required, in part, due to the weak binding of rFVIIa to platelets. We hypothesized that the efficacy of the therapy could be improved by administering rFVIIa already bound to platelets. A recently described protocol involving pretreatment of platelets with paraformaldehyde permits platelets to be lyophilized while preserving many platelet functions. Such platelets could be used for binding rFVIIa ex vivo and then administered to hemophilic patients during a bleeding event. In this study, we have characterized the ability of reconstituted, lyophilized (RL) platelets to support thrombin generation under normal and hemophilic conditions and in the presence of rFVIIa. First, freshly-isolated (control) or RL platelets were incubated with factors IXa, VIII(a), X, V and II in the presence of 3 mM CaCl2 and assayed for thrombin generation. In these assays, both freshly-isolated and RL platelets supported thrombin generation (1.15x10−4 +/− 5.37x10−5 mOD/min2/platelet and 8.46x10−3 +/− 4.78x10−3 mOD/min2/platelet, respectively). In the absence of factor IX (hemophilia B), thrombin generation was significantly reduced on both freshly-isolated and RL platelets (4.19x10−6 +/− 4.50x10−6 mOD/min2/platelet and 8.25x10−4 +/− 1.13x10−6 mOD/min2/platelet, respectively). Interestingly, RL platelets supported 10 – 100-fold higher thrombin generation rates than fresh thrombin-activated platelets. Second, we examined the activity of rFVIIa on RL platelets in the absence of factors IX and VIII. RFVIIa increased thrombin generation on RL platelets in a rFVIIa-concentration dependent manner (between 1nM and 150nM), similar to that seen when using fresh platelets. An inhibitory anti-tissue factor (TF) antibody did not affect rFVIIa-mediated thrombin generation on RL platelets, indicating that the activity of rFVIIa on RL platelets is independent of TF. Finally, we examined the effect of different platelet agonists (thrombin, convulxin, and A23187) on fresh and RL platelets. When fresh platelets are stimulated with A23187 or co-stimulated with thrombin and convulxin, they become more procoagulant than platelets activated with thrombin alone. However, stimulation of RL platelets with A23187 or co-stimulation with thrombin and convulxin did not increase thrombin generation versus thrombin alone. RL platelets stimulated with thrombin, alone, had 3.1-fold higher activity than thrombin- and convulxin-costimulated fresh platelets, but 1.4-fold lower activity than A23187-stimulated fresh platelets. These data suggest that RL platelets are in a maximally active state prior to the addition of platelet agonists. We conclude that RL platelets are procoagulant and can support rFVIIa-mediated thrombin generation in the absence of factor IX. We hypothesize that co-administration of RL platelets with rFVIIa may increase the efficacy of rFVIIa treatment.


Sign in / Sign up

Export Citation Format

Share Document