Embryonic Stem Cell-Derived T Cells Induce Lethal Graft-Versus-Host Disease and Reject Allogenic Skin Grafts upon Thymic Selection

2011 ◽  
Vol 12 (3) ◽  
pp. 600-609 ◽  
Author(s):  
E. M. Kim ◽  
R. Stultz ◽  
S. Bonde ◽  
N. Zavazava
Blood ◽  
2013 ◽  
Vol 121 (18) ◽  
pp. 3745-3758 ◽  
Author(s):  
Emily Blyth ◽  
Leighton Clancy ◽  
Renee Simms ◽  
Chun K. K. Ma ◽  
Jane Burgess ◽  
...  

Key Points Infusion of CMV-specific T cells early posttransplant does not increase acute or chronic graft-versus-host disease. CMV-specific T cells early posttransplant reduce the need for pharmacotherapy without increased rates of CMV-related organ damage.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 426-426
Author(s):  
Scott R. Solomon ◽  
Thao Tran ◽  
Charles S. Carter ◽  
Nancy Hensel ◽  
Laura Wisch ◽  
...  

Abstract Graft-versus-host disease (GVHD) remains a major cause of morbidity and mortality after allogeneic stem cell transplant (SCT), especially in older patients. We previously showed that host-reactive donor T cells are selectively depleted (SD) from an allograft ex vivo, following a short co-culture of donor cells with irradiated T cell stimulators from the recipient and subsequent treatment with an anti-CD25 immunotoxin. We report a pilot study to test the hypothesis that GVHD could be decreased in a cohort of elderly patients receiving SD allografts from HLA-identical sibling donors. Sixteen patients, median age 65 years (range 51–73), with advanced hematologic malignancies were transplanted following reduced-intensity conditioning with fludarabine and either cyclophosphamide (n=5), melphalan (n=5), or busulfan (n=6). Cyclosporine was used as the only additional GVHD prophylaxis. SD allografts contained a median CD34 dose of 4.5x106/kg (range 3.5–7.3) and an SD CD3 dose of 1.0x108/kg (range 0.2–1.5). Fifteen patients achieved sustained engraftment. The helper T lymphocyte precursor (HTLp) frequency assay demonstrated depletion of host-reactive donor T cells in 9/11 cases tested from a mean of 1/182,089 to 1/822,354 (mean 5.5-fold depletion), while third party responses were conserved. Kaplan-Meier estimates of probability of grade II-IV and grade III-IV acute GVHD were lower than those seen in a historical control group of patients receiving cyclosporine alone for GVHD prophylaxis (35±13% vs. 57±10%, p=0.34) and (7±6% vs. 38±6%, p=0.05), respectively. Of note, the two patients who developed visceral (gut ± liver) GVHD showed ineffective allodepletion by HTLp (figure). Chronic GVHD occurred in five of 14 evaluable patients. At a median follow-up of 212 days (range 60 – 690), seven of sixteen patients remain alive and in remission. Relapse deaths occurred in four patients (refractory AML [2], therapy-related MDS [1], and CMML [1]). Non-relapse mortality in this high-risk cohort of patients included graft failure [1], GVHD [2], infection [1], and myocardial infarction [1]. In summary, CD25-directed allodepletion of stem cell allografts can reduce clinically relevant acute GVHD following matched related donor transplantation. Figure Figure


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1972-1972
Author(s):  
Gerald P. Morris ◽  
Geoffrey L Uy ◽  
David L Donermeyer ◽  
Paul M Allen ◽  
John F. DiPersio

Abstract Abstract 1972 The nature of the T cell repertoire mediating pathologic in vivo alloreactivity is an important question for understanding the development of acute graft-versus-host disease (aGvHD) following clinical allogeneic transplantation. We have previously demonstrated that the small proportion of T cells that naturally express 2 T cell receptors (TCR) as a consequence of incomplete TCRa allelic exclusion during thymic development contribute disproportionately to the alloreactive T cell repertoire, both in vitro and in vivo in a mouse model of graft versus host disease (GvHD) (J. Immunol., 182:6639, 2009). Here, we extend these findings to human biology, examining dual TCR T cells from healthy volunteer donors (n = 12) and patients who have undergone allogeneic hematopoietic stem cell transplantation (HSCT) (n = 19). Peripheral blood was collected at day 30 post-HSCT or at the time of presentation with symptomatic acute GvHD. Dual TCR T cells were measured in peripheral blood by pair-wise staining with 3 commercially-available and 2 novel TCRa mAbs. Dual TCR T cells were consistently and significantly expanded in patients with symptomatic aGvHD, representing 5.3±3.8 % of peripheral T cells, compared to 1.7±0.8 % of T cells in healthy controls (p < 0.005) (Figure 1). There was no correlation between dual TCR T cell frequency and GvHD severity. Furthermore, sequential analysis of peripheral blood in 2 patients demonstrated expansion of dual TCR T cells concurrent with the development of aGvHD (Figure 2). Dual TCR T cells from patients with symptomatic aGvHD demonstrated increased expression of CD69 as compared to T cells expressing a single TCR, indicative of preferential activation of dual TCR T cells during aGvHD. Similarly, dual TCR T cells isolated from patients with symptomatic aGvHD demonstrate increased production of IFN-g ex vivo, indicative of the ability to mediate pathogenic alloreactive responses. Dual TCR T cell clones isolated from healthy donors and patients post-HSCT by single cell FACS sorting demonstrate alloreactive responses against a range of allogeneic cell lines in vitro. We propose that the increased alloreactivity of dual TCR T cells results from the less stringent thymic selection for secondary TCR, and thus provides a link between thymic selection, the TCR repertoire, and alloreactivity. These findings may lead to simple ways of phenotypically identifying specific T cells predisposed to inducing aGvHD for subsequent examination of T cell repertoires and functional studies. Furthermore, these data suggest that dual TCR T cells represent a potential predictive biomarker for aGvHD and a potential target for selective T cell depletion in HSCT. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1969-1969
Author(s):  
Joseph Leventhal ◽  
Paul A Cardenas ◽  
Mary J Elliott ◽  
Suzanne T Ildstad

Abstract Abstract 1969 Background: It has been known for over 50 years that hematopoietic stem cell (HSC) chimerism induces tolerance to transplanted tissues and cells. However, the widespread application of this approach has been constrained by graft-versus-host disease (GVHD), the need for close genetic matching between donor and recipient, and the toxicity of conditioning the recipient to establish chimerism. We have demonstrated that full donor chimerism can be established with minimal toxicity in highly-mismatched unrelated and related kidney allograft recipients through nonmyeloablative conditioning followed by infusion of a bioengineered CD8+/TCR− facilitating cell stem cell graft (FCRx), to avoid the risk of GVHD while achieving chimerism. Methods: Twelve HLA-mismatched living donor renal transplant recipients have been entered into a phase 2 trial (IDE 13947) involving low-intensity conditioning (fludarabine, cyclophosphamide, 200 cGy TBI days −4 to −1). Patients received a living donor kidney transplant on day 0, followed by infusion of G-CSF cryopreserved FCRx on day +1. All subjects were discharged by post-operative day 3 and managed as outpatients. We herein present data regarding the immunologic recovery observed in our first 8 evaluable patients with > 6 months follow up. Results: All patients experienced an expected nadir period affecting leukocytes (ANC < 500, range 2–14 days) and platelets (< 50K, range 0–20 days). All patients demonstrated peripheral blood macrochimerism at 1 month post-transplant, ranging from 6% to 100%. Chimerism was gradually lost in two patients at 3 and 6 months post-transplant. Patients demonstrated in vitro evidence of donor-specific hyporesponsiveness (DSH) by MLR +/− CML as early as 3 months post-transplant; of interest, DSH also was observed and persisted in the two patients who lost peripheral blood chimerism. Patients at > 1 yr post-transplant are immunocompetent to respond to mitogen (PHA), MHC-disparate third-party alloantigen, and tetanus in in vitro proliferative assays. Immunologic reconstitution in kidney + FCRx recipients was characterized by a blunted return in CD4+ T cells, with inversion of the CD4/CD8 ratio. A preferential recovery of memory (CD4+/CD45RO+/CD62L+/−) vs. naïve (CD4+/CD45RA+/CD62L+) T cells was observed. Although total number of CD4+/CD25+/CD127lo/FoxP3+ Treg was reduced initially, an increase in the CD4+ Treg /CD4+Teff (CD4+/CD45RA+/CD62L−) ratio was seen in patients exhibiting durable chimerism. In addition, an expansion of central memory CD8+ T cells was observed in durably chimeric recipients. No patient developed donor-specific antibodies as assessed by flow cytometric analysis. The absence of GVHD correlated with in vitro hyporesponsiveness of the fully chimeric recipients against archived pre-treatment recipient APC. Conclusions: Combined kidney + FCRx recipients demonstrate characteristic immunophenotypic and functional changes associated with reconstitution following transplantation; additional studies are required to determine whether these changes are mechanistically related to the persistence of chimerism and/or prevention of GVHD. Disclosures: Ildstad: Regenerex LLC: Equity Ownership.


Blood ◽  
2003 ◽  
Vol 102 (2) ◽  
pp. 734-739 ◽  
Author(s):  
Anke Franzke ◽  
Wenji Piao ◽  
Jörg Lauber ◽  
Patricia Gatzlaff ◽  
Christian Könecke ◽  
...  

Abstract Results from experimental models, in vitro studies, and clinical data indicate that granulocyte colony-stimulating factor (G-CSF) stimulation alters T-cell function and induces Th2 immune responses. The immune modulatory effect of G-CSF on T cells results in an unexpected low incidence of acute graft-versus-host disease in peripheral stem cell transplantation. However, the underlying mechanism for the reduced reactivity and/or alloreactivity of T cells upon G-CSF treatment is still unknown. In contrast to the general belief that G-CSF acts exclusively on T cells via monocytes and dendritic cells, our results clearly show the expression of the G-CSF receptor in class I– and II– restricted T cells at the single-cell level both in vivo and in vitro. Kinetic studies demonstrate the induction and functional activity of the G-CSF receptor in T cells upon G-CSF exposure. Expression profiling of T cells from G-CSF–treated stem cell donors allowed identification of several immune modulatory genes, which are regulated upon G-CSF administration in vivo (eg, LFA1-α, ISGF3-γ) and that are likely responsible for the reduced reactivity and/or alloreactivity. Most importantly, the induction of GATA-3, the master transcription factor for a Th2 immune response, could be demonstrated in T cells upon G-CSF treatment in vivo accompanied by an increase of spontaneous interleukin-4 secretion. Hence, G-CSF is a strong immune regulator of T cells and a promising therapeutic tool in acute graft-versus-host disease as well as in conditions associated with Th1/Th2 imbalance, such as bone marrow failure syndromes and autoimmune diseases.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4969-4969
Author(s):  
Chengwei Luo ◽  
Xin Du ◽  
Jianyu Weng ◽  
Rong Guo ◽  
Zesheng Lu

Abstract Graft-versus-host disease (GVHD) is a serious complication of allogeneic peripheral blood stem cell transplantation (PBSCT), which contribute to morbidity and mortality after transplantation. Approximately half of the patients that undergo allogeneic stem cell transplantation develop severe acute or chronic graft-versus-host disease [Shulman HM et al. Am J Med, 1980], which varies with the degree of histoincompatibility, the recipient and donor ages, the source and quality of donor T lymphocytes, the incidence of cytomegalovirus infection,and type of GVHD prophylaxis strategy. The combination of immunosuppressive drugs, CsA and short-course MTX is a standard regiment for prevention of GVHD after BMT [Nademanee A et al. Blood, 1995], and have been shown in randomize trials to be superior to either drug alone in preventing severe GVHD [Storb R N Engl J Med.1986]. Although the efficacy of the regimens in preventing GVHD, the incidence reported for GVHD after transplantation is 38–68%. Each of these agents is also associated with significant organ toxicity. MMF is an new immunosuppressive drug, which selectively inhibits proliferation of T and B lymphocytes, formation of antibodies, and glycosylation of adhesion molecules by inhibition purine nucleotide synthesis and depleting the lymphocytes and monocytes of guanosine triphosphate. In patients undergoing renal and heart transplantation, it has been successfully used to prevent graft rejection [Lang P et al.Transplantation, 2005]. We compared the effects of MMF+ CsA+ MTX as GVHD prophylaxis vs CsA + MTX in patients undergoing allogeneic peripheral blood stem cell transplantation. In all, 33 patients were enrolled in this study. The first group, of 16 patients, received CsA at 3mg/kg i.v. from day −1 to +30 day and MTX was on 15mg/m2 day +1 and 10mg/m2 day +3, +6, +11. The other group, of 17 patients received MMF 1g/d day −7 until day 0 and CsA + MTX. Here we used flow cytometric analysis technique to measure the changes of T cell subsets before and after treatment of MMF and CsA. Our study showed the incident of aGVHD is 25% when we combined standard GVHD proplylaxis with MMF after PBSCT, Which significantly reduce the risk of aGVHD than the combination of CsA and MTX (58.8%). Therefore, MMF is an effective drug in prophylaxis of aGVHD. Chronic GVHD is a late complication of PBSCT, Which develops approximately 30% in related donor HLA-matched allografts, and 60–70% in HLA-unmatched. The incident is not reduce with the development of aGVHD prophylaxis, Our result showed that the incident of cGVHD in research group (25%) is the same as the control group (23.5%). It seems that MMF is not reduce the incident of cGVHD, which may be different frome aGVHD. Our conclude that the number of CD3+ CD4+T cells decreased after the treatment of MMF, and those of CD3+ CD8+T cells increased,with reduction of the CD4+/CD8+ ratio. the number of CD25+ CD4+ and CD69+ CD8+ T cells were all increase. It seems that MMF may preferably effect on the CD3+CD4+T cells and the combination of MMF with CSA and MTX can significantly reduce the incidence of acute graft-vost-host diease, It appears to have a synergic action with CSA for the treatment of aGVHD.


Sign in / Sign up

Export Citation Format

Share Document