Scaling species dynamics in Pinus palustris communities: Effects of pine straw raking

2002 ◽  
Vol 13 (6) ◽  
pp. 755-764 ◽  
Author(s):  
Lisa A. Kelly ◽  
Thomas R. Wentworth ◽  
Cavell Brownie
2021 ◽  
Vol 39 (3) ◽  
pp. 115-122
Author(s):  
Zachary Singh ◽  
Adam Maggard ◽  
Rebecca Barlow ◽  
John Kush

Abstract Longleaf pine (Pinus palustris Mill.), and slash pine (Pinus elliottii Engelm.) are two southern pine species that are popular for producing pine straw for landscaping. The objective of this research was to determine the response of soil properties and weed growth to the application of pine straw. Longleaf pine, slash pine, and two non-mulched controls (with and without chemical weed control) were tested. Volumetric soil water content, soil nutrients, soil temperature, weed biomass, and seedling growth were measured. Compared to non-mulched controls, both longleaf and slash pine plots had a greater soil moisture during extended periods without rainfall in the full sun environment. When soil temperatures increased, mulched plots had lower soil temperature relative to non-mulched plots. Soil pH and soil nutrients were generally similar between pine straw types with few significant differences in measured variables. Both pine straw treatments reduced weed growth and longleaf pine maintained a greater straw depth over the study period compared to slash pine, but no differences were observed for decomposition. These results indicate that longleaf pine straw and slash pine straw perform equally as well in terms of increasing soil moisture, moderating soil temperature, and reducing weed growth compared to not using mulch. Index words: Pinus elliottii, Pinus palustris, organic mulch, soil properties, landscaping. Species used in this study: Shumard oak, Quercus shumardii Buckl., Eastern redbud, Cercis canadensis L.


2017 ◽  
Vol 27 (2) ◽  
pp. 199-211 ◽  
Author(s):  
S. Christopher Marble ◽  
Andrew K. Koeser ◽  
Gitta Hasing ◽  
Drew McClean ◽  
Annette Chandler

Organic mulch is commonly used in landscape planting beds to improve plant growth and reduce competition from weed species. Although many different mulch materials have been evaluated in landscape, forestry, or agricultural settings, there have been no previous reports concerning the maintenance costs associated with different mulch materials from a weed control perspective. Trials were conducted at two locations in Florida to estimate the annual maintenance costs associated with pine bark nuggets (bark derived from pine species not specified) and pine straw mulch [mix of longleaf pine (Pinus palustris) and slash pine (Pinus taeda) needles] with and without the use of a granular preemergence herbicide when maintained at similar depths in schilling’s holly (Ilex vomitoria ‘Schilling’s Dwarf’) shrub beds and asiatic jasmine (Trachelospermum asiaticum ‘Minima’) groundcover beds. Weed coverage and residual mulch depth were tracked over time, with maximum and minimum thresholds (20% and 2 inches, respectively) set as triggers for maintenance activities. Results showed that the addition of herbicide (trifluralin + isoxaben) had little to no impact on weeding frequency or time when plots were mulched, but did reduce hand weeding frequency and time compared with nontreated, nonmulched plots. Both mulch materials used alone reduced hand weeding frequency and time compared with herbicide-only treatments. Although results varied by bed type and location, pine bark generally provided greater weed control compared with pine straw and required fewer mulch additions and less mulch by volume. Results from this study suggests that using pine bark nuggets as mulch may result in lower maintenance costs and weed pressure compared with pine straw when both are applied and maintained at 2-inch depths.


2009 ◽  
Vol 33 (3) ◽  
pp. 115-120 ◽  
Author(s):  
James D. Haywood

Abstract This research was initiated in a 34-year-old, direct-seeded stand of longleaf pine (Pinus palustris Mill.) to study how pine straw management practices (harvesting, fire, and fertilization) affected the longleaf pine overstory and pine straw yields. A randomized complete block split-plot design was installed with two main plot treatments: (1) no fertilization and (2) fertilization with 45 lb N and 50 lb P/ac in April 1991 and May 1997 and with 50 lb P and 72 lb K/ac in April 2004. There were four subplot treatments: (1) control—no activity except a standwide thinning in June 1999, (2) prescribed burn 6 times from March 1991 through May 2004, (3) prescribed burned as in subplot treatment 2 and pine straw harvested in early 1992 and 1993, and (4) annual harvest of pine straw 13 times from early 1992 through April 2006. Fertilization did not affect longleaf pine growth and yield over the 15-year study. Subplot management also did not influence longleaf pine growth possibly because the adverse effects that competition, repeated prescribed burning, and litter removal have on longleaf pine growth could not be separated among subplot treatments. Fertilization did not directly affect pine straw yields; however, it appeared that pine straw yields decreased over time.


2021 ◽  
Vol 4 ◽  
Author(s):  
Karuna Paudel ◽  
Puneet Dwivedi

During the early 1900s, nearly 37 million hectares of land in the Southern United States were under longleaf pine (Pinus palustris) relative to the current area of 1.6 million hectares. This study compares the economics of southern pines (longleaf, loblolly (Pinus taeda), and slash (Pinus elliottii)) to facilitate the decision making of family forest landowners and design suitable financial incentives for increasing the area under longleaf pine in the region. We simulated six growth and yield scenarios for selected southern pines over three site indices in the Lower Coastal Plain of South Georgia. We estimated land expectation values (LEVs) of each scenario for the three cases, i.e., payment for forest products, payment for forest products and net carbon storage, and payment for forest products, net carbon storage, and net water yield. Our findings show that pine straw income significantly increases the LEV of longleaf pine. The financial risk of growing longleaf pine is lower than that of other southern pines. Existing financial support through various governmental incentives or additional monetary support for ecosystem services provided by longleaf pine ecosystems is needed to increase the area under longleaf pine in the Southern United States, in general, and in South Georgia, in particular. However, a need exists to reevaluate the conservation values provided by longleaf plantations considering expected shorter rotation ages due to the income provided by pine straw markets in Southern United States.


1991 ◽  
Vol 15 (2) ◽  
pp. 88-92 ◽  
Author(s):  
Joseph P. Roise ◽  
Joosang Chung ◽  
Richard Lancia

Abstract This paper contains an economic analysis of shelterwood management of longleaf pine (Pinus palustris Mill) with markets for both timber and pine straw. It was found that extended rotations required for red-cockaded woodpecker (Picoides borealis) habitat, while not optimal, are better when pine straw is also a market product than when considering timber alone. Rotation ages were fixed at 60, 80, 100, and 120 years to provide red-cockaded woodpecker habitat. A single thinning is included with variable timing and intensity. Intensive site treatments are also included to control litter, grasses, hardwood, and brown spot disease. An equation for pine straw yield as a function of basal area is presented. Pine straw may increase soil expectation value by more than 230% over that provided by timber alone. South. J. Appl. For. 15(2):88-92.


1998 ◽  
Vol 14 (2) ◽  
pp. 157-167 ◽  
Author(s):  
James D. Haywood ◽  
Allan E. Tiarks ◽  
Michael L. Elliott-Smith ◽  
Henry A. Pearson

Fire Ecology ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Marcelo H. Jorge ◽  
Sara E. Sweeten ◽  
Michael C. True ◽  
Samuel R. Freeze ◽  
Michael J. Cherry ◽  
...  

Abstract Background Understanding the effects of disturbance events, land cover, and weather on wildlife activity is fundamental to wildlife management. Currently, in North America, bats are of high conservation concern due to white-nose syndrome and wind-energy development impact, but the role of fire as a potential additional stressor has received less focus. Although limited, the vast majority of research on bats and fire in the southeastern United States has been conducted during the growing season, thereby creating data gaps for bats in the region relative to overwintering conditions, particularly for non-hibernating species. The longleaf pine (Pinus palustris Mill.) ecosystem is an archetypal fire-mediated ecosystem that has been the focus of landscape-level restoration in the Southeast. Although historically fires predominately occurred during the growing season in these systems, dormant-season fire is more widely utilized for easier application and control as a means of habitat management in the region. To assess the impacts of fire and environmental factors on bat activity on Camp Blanding Joint Training Center (CB) in northern Florida, USA, we deployed 34 acoustic detectors across CB and recorded data from 26 February to 3 April 2019, and from 10 December 2019 to 14 January 2020. Results We identified eight bat species native to the region as present at CB. Bat activity was related to the proximity of mesic habitats as well as the presence of pine or deciduous forest types, depending on species morphology (i.e., body size, wing-loading, and echolocation call frequency). Activity for all bat species was influenced positively by either time since fire or mean fire return interval. Conclusion Overall, our results suggested that fire use provides a diverse landscape pattern at CB that maintains mesic, deciduous habitat within the larger pine forest matrix, thereby supporting the diverse bat community at CB during the dormant season and early spring.


Fire ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 36
Author(s):  
Quinn A. Hiers ◽  
E. Louise Loudermilk ◽  
Christie M. Hawley ◽  
J. Kevin Hiers ◽  
Scott Pokswinski ◽  
...  

Measuring wildland fuels is at the core of fire science, but many established field methods are not useful for ecosystems characterized by complex surface vegetation. A recently developed sub-meter 3D method applied to southeastern U.S. longleaf pine (Pinus palustris) communities captures critical heterogeneity, but similar to any destructive sampling measurement, it relies on separate plots for calculating loading and consumption. In this study, we investigated how bulk density differed by 10-cm height increments among three dominant fuel types, tested predictions of consumption based on fuel type, height, and volume, and compared this with other field measurements. The bulk density changed with height for the herbaceous and woody litter fuels (p < 0.001), but live woody litter was consistent across heights (p > 0.05). Our models predicted mass well based on volume and height for herbaceous (RSE = 0.00911) and woody litter (RSE = 0.0123), while only volume was used for live woody (R2 = 0.44). These were used to estimate consumption based on our volume-mass predictions, linked pre- and post-fire plots by fuel type, and showed similar results for herbaceous and woody litter when compared to paired plots. This study illustrates an important non-destructive alternative to calculating mass and estimating fuel consumption across vertical volume distributions at fine scales.


Sign in / Sign up

Export Citation Format

Share Document