Secondary forests of central Panama increase in similarity to old-growth forest over time in shade tolerance but not species composition

2012 ◽  
Vol 24 (3) ◽  
pp. 530-542 ◽  
Author(s):  
Daisy H. Dent ◽  
Saara J. DeWalt ◽  
Julie S. Denslow
2013 ◽  
Vol 29 (4) ◽  
pp. 301-311 ◽  
Author(s):  
Julieta Benítez-Malvido ◽  
Miguel Martínez-Ramos

Abstract:Plant survival and growth in tropical rain forest are affected by different biotic and abiotic forces. As time elapses and plants grow the relative importance of such forces as regeneration inhibitors and/or facilitators may change according to habitat and species. To detect within- and among-species divergences in performance over time in different habitats we followed, for nearly a decade, the survival, growth and herbivory of seedlings of the native tree species: Chrysophyllum pomiferum, Micropholis venulosa and Pouteria caimito. In Central Amazonia, young seedlings were planted into old-growth and secondary forests dominated by Vismia spp. One year after planting, C. pomiferum ranked first (i.e. fast growth, fewer dead and less herbivory) for both habitats, followed by M. venulosa and P. caimito. Initial trends changed over time. In the long term, M. venulosa ranked first for both habitats, followed by C. pomiferum and P. caimito ranked consistently lowest. Within-species divergences in growth and herbivory were greater in secondary forest. Initial seedling responses cannot always be used to predict species persistence in the long term. Contrary to previous estimations, old-growth-forest species can persist under Vismia spp. stands, at least when planted.


2021 ◽  
Vol 4 ◽  
Author(s):  
Jeffrey Opoku-Nyame ◽  
Alain Leduc ◽  
Nicole J. Fenton

Clear cut harvest simplifies and eliminates old growth forest structure, negatively impacting biodiversity. Partial cut harvest has been hypothesized (1) to have less impact on biodiversity than clear cut harvest, and (2) to encourage old growth forest structures. Long-term studies are required to test this hypothesis as most studies are conducted soon after harvest. Using epixylic bryophytes as indicators, this study addresses this knowledge gap. Fourteen years after harvest, we examined changes in epixylic bryophyte community composition richness and traits, and their microhabitats (coarse woody debris characteristics and microclimate) along an unharvested, partial cuts and clear cuts harvest treatment in 30 permanent plots established in the boreal black spruce (Picea mariana) forests of northwestern Quebec, Canada. Our results were compared to those of an initial post-harvest study (year 5) and to a chronosequence of old growth forests to examine species changes over time and the similarity of bryophyte communities in partial cut and old growth forests. Coarse woody debris (CWD) volume by decay class varied among harvest treatments with partial cuts and clear cuts recording lower volumes of early decay CWD. The epixylic community was richer in partial cuts than in mature unharvested forests and clear cuts. In addition, species richness and overall abundance doubled in partial and clear cuts between years 5 and 14. Species composition also differed among treatments between years 5 and 14. Furthermore, conditions in partial cut stands supported small, drought sensitive, and old growth confined species that are threatened by conditions in clear cut stands. Lastly, over time, species composition in partial cuts became more similar to old growth forests. Partial cuts reduced harvest impacts by continuing to provide favorable microhabitat conditions that support epixylic bryophytes. Also, partial cut harvest has the potential to encourage old growth species assemblages, which has been a major concern for biodiversity conservation in managed forest landscapes. Our findings support the promotion of partial cut harvest as an effective strategy to achieve species and habitat conservation goals.


2019 ◽  
Vol 5 (3) ◽  
pp. eaau3114 ◽  
Author(s):  
Danaë M. A. Rozendaal ◽  
Frans Bongers ◽  
T. Mitchell Aide ◽  
Esteban Alvarez-Dávila ◽  
Nataly Ascarrunz ◽  
...  

Old-growth tropical forests harbor an immense diversity of tree species but are rapidly being cleared, while secondary forests that regrow on abandoned agricultural lands increase in extent. We assess how tree species richness and composition recover during secondary succession across gradients in environmental conditions and anthropogenic disturbance in an unprecedented multisite analysis for the Neotropics. Secondary forests recover remarkably fast in species richness but slowly in species composition. Secondary forests take a median time of five decades to recover the species richness of old-growth forest (80% recovery after 20 years) based on rarefaction analysis. Full recovery of species composition takes centuries (only 34% recovery after 20 years). A dual strategy that maintains both old-growth forests and species-rich secondary forests is therefore crucial for biodiversity conservation in human-modified tropical landscapes.


1983 ◽  
Vol 7 (4) ◽  
pp. 208-212 ◽  
Author(s):  
Robert N. Muller

Abstract An old-growth forest and a 35-year-old, second-growth forest on the Cumberland Plateau were studied to compare species composition and structure. Species composition and total basal area of the two stands did not differ, although total stand density was 19 percent lower and basal area of commercial species was 25 percent higher in the old-growth than in the second-growth stand. Analysis of size-class distributions showed that both stands were best represented by an inverse J-shaped distribution, which best describes old-age stands. The rapid regeneration of the second-growth stand seems to be the result of minimal disturbance to accumulated nutrient pools in the soil. The importance of these accumulated nutrient pools and implications for forest management on the Cumberland Plateau are discussed.


1987 ◽  
Vol 17 (7) ◽  
pp. 697-704 ◽  
Author(s):  
James K. Agee ◽  
Mark H. Huff

Fuel succession was quantified for a 515-year chronosequence in a Tsugaheterophylla/Pseudotsugamenziesii forest. Postfire stand ages selected were 1, 3, 19, 110, 181, and 515. After initial reductions due to mortality from fire in the first 3 years, live aboveground biomass in the tree component increased over time to over 1100 t/ha. Shrub and herb layer biomass was highest in year 19 and year 515. Dead aboveground biomass had different trends for different fuel size classes; normalized fuel loadings of five dead and down fuel categories peaked at four different stand ages: 1-h and 10-h timelag (TL) fuels, age 1; 100-h TL fuels, age 19; 1000-h TL fuels, age 110; >1000-h TL fuels, age 515. Surface fire behavior was highest early in the sere and lowest at ages 110–181. Old-growth forest patches appear to be best buffered against forest fire by mature forest patches rather than old growth or recently burned natural stands.


Author(s):  
Hao Ran Lai ◽  
Germaine Su Yin Tan ◽  
Louise Neo ◽  
Carmen Yingxin Kee ◽  
Alex Thiam Koon Yee ◽  
...  

2020 ◽  
Vol 66 (No. 12) ◽  
pp. 501-510
Author(s):  
Ladislav Šumichrast ◽  
Jaroslav Vencurik ◽  
Ján Pittner ◽  
Stanislav Kucbel

The main goal of this paper was to evaluate structure dynamics in the fir-beech, old-growth forest Badínsky prales. Measurements were taken on four permanent research plots (0.5 ha each) between 1970 and 2018, typically in ten-year intervals. In order to assess long-term structure dynamics, this study used basic stand characteristics and selected structural indices – the relative density (RD), coefficient of homogeneity (H), and structural complexity index (SCI). Species composition was quantified by the relative importance value (RIV), and a detrended correspondence analysis was carried out for the visualisation of long-term changes. The long-term mean of the stand volume reached 634 ± 99 m3·ha−1, and the mean of the basal area was 36.6 ± 4.0 m2·ha–1. Calculated values of the coefficient of homogeneity (1.46–2.54) were similar to values in other old-growth forests with a comparable tree species composition. An increasing trend in beech RIV values was observed; on the other hand, fir RIV values fell by approximately 20%–25%. In 2018, maximal values of the basal area, stand volume and relative density were recorded. These high values may indicate better growth conditions due to climate change, as well as fewer disturbance events in the last few decades.


2019 ◽  
Vol 66 (2) ◽  
pp. 145-153 ◽  
Author(s):  
Ricardo Rocha ◽  
Adrià López-Baucells ◽  
Fábio Z Farneda ◽  
Diogo F Ferreira ◽  
Inês Silva ◽  
...  

Abstract Secondary forests and human-made forest gaps are conspicuous features of tropical landscapes. Yet, behavioral responses to these aspects of anthropogenically modified forests remain poorly investigated. Here, we analyze the effects of small human-made clearings and secondary forests on tropical bats by examining the guild- and species-level activity patterns of phyllostomids sampled in the Central Amazon, Brazil. Specifically, we contrast the temporal activity patterns and degree of temporal overlap of 6 frugivorous and 4 gleaning animalivorous species in old-growth forest and second-growth forest and of 4 frugivores in old-growth forest and forest clearings. The activity patterns of frugivores and gleaning animalivores did not change between old-growth forest and second-growth, nor did the activity patterns of frugivores between old-growth forest and clearings. However, at the species level, we detected significant differences for Artibeus obscurus (old-growth forest vs. second-growth) and A. concolor (old-growth forest vs. clearings). The degree of temporal overlap was greater than random in all sampled habitats. However, for frugivorous species, the degree of temporal overlap was similar between old-growth forest and second-growth; whereas for gleaning animalivores, it was lower in second-growth than in old-growth forest. On the contrary, forest clearings were characterized by increased temporal overlap between frugivores. Changes in activity patterns and temporal overlap may result from differential foraging opportunities and dissimilar predation risks. Yet, our analyses suggest that activity patterns of bats in second-growth and small forest clearings, 2 of the most prominent habitats in humanized tropical landscapes, varies little from the activity patterns in old-growth forest.


1997 ◽  
Vol 75 (5) ◽  
pp. 744-761 ◽  
Author(s):  
Bengt Gunnar Jonsson

Riparian forests are productive and species rich ecosystems where the vegetation is structured by sharp environmental gradients. The study describes community patterns of bryophytes in stream-side forests, relates these patterns to major environmental gradients, and compares within-site factors with site level variables. Samples were collected from 360 plots 2 × 4 m in size distributed among 42 sites in old-growth Pseudotsuga–Tsuga forests. The sites ranged from 420 to 1250 m asl and stream size from 1st to 5th order streams. There were significant changes in species richness and composition along several environmental gradients. Richness within sites varied among different geomorphic surfaces with the highest number of species on areas periodically flooded. Richness was also higher in plots with high abundance of woody debris. No site level factors influenced richness at the sample plot level, while the highest species number at the site level was for large streams. The main gradients in the species composition within sites were changes with increasing distance from the stream and amount of woody debris. Both elevation and stream size significantly influenced species composition. The complex set of factors that influenced species richness and composition implies that management of riparian vegetation must be based on both coarse scale considerations such as regional distribution of different stream types and fine scale factors such as spatial availability of different substrate types. Key words: old-growth forest; CCA analysis; fluvial disturbance; bryophytes; elevation effects; coarse woody debris.


Sign in / Sign up

Export Citation Format

Share Document