scholarly journals Stefin A displaces the occluding loop of cathepsin B only by as much as required to bind to the active site cleft

FEBS Journal ◽  
2010 ◽  
Vol 277 (20) ◽  
pp. 4338-4345 ◽  
Author(s):  
Miha Renko ◽  
Urška Požgan ◽  
Dušana Majera ◽  
Dušan Turk
2018 ◽  
Vol 399 (10) ◽  
pp. 1223-1235 ◽  
Author(s):  
Andreas Porodko ◽  
Ana Cirnski ◽  
Drazen Petrov ◽  
Teresa Raab ◽  
Melanie Paireder ◽  
...  

Abstract The genome of the model plant Arabidopsis thaliana encodes three paralogues of the papain-like cysteine proteinase cathepsin B (AtCathB1, AtCathB2 and AtCathB3), whose individual functions are still largely unknown. Here we show that a mutated splice site causes severe truncations of the AtCathB1 polypeptide, rendering it catalytically incompetent. By contrast, AtCathB2 and AtCathB3 are effective proteases which display comparable hydrolytic properties and share most of their substrate specificities. Site-directed mutagenesis experiments demonstrated that a single amino acid substitution (Gly336→Glu) is sufficient to confer AtCathB2 with the capacity to tolerate arginine in its specificity-determining S2 subsite, which is otherwise a hallmark of AtCathB3-mediated cleavages. A degradomics approach utilizing proteome-derived peptide libraries revealed that both enzymes are capable of acting as endopeptidases and exopeptidases, releasing dipeptides from the C-termini of substrates. Mutation of the carboxydipeptidase determinant His207 also affected the activity of AtCathB2 towards non-exopeptidase substrates, highlighting mechanistic differences between plant and human cathepsin B. This was also noted in molecular modeling studies which indicate that the occluding loop defining the dual enzymatic character of cathepsin B does not obstruct the active-site cleft of AtCathB2 to the same extent as in its mammalian orthologues.


2004 ◽  
Vol 381 (2) ◽  
pp. 511-517 ◽  
Author(s):  
Igor ŠTERN ◽  
Norbert SCHASCHKE ◽  
Luis MORODER ◽  
Dušan TURK

The crystal structure of the inhibitor NS-134 in complex with bovine cathepsin B reveals that functional groups attached to both sides of the epoxysuccinyl reactive group bind to the part of active-site cleft as predicted. The -Leu-Pro-OH side binds to the primed binding sites interacting with the His110 and His111 residues with its C-terminal carboxy group, whereas the -Leu-Gly-Meu (-Leu-Gly-Gly-OMe) part (Meu, methoxycarbonylmethyl) binds along the non-primed binding sites. Comparison with the propeptide structures of cathepsins revealed that the binding of the latter part is least similar to the procathepsin B structure; this result, together with the two-residue shift in positioning of the Leu-Gly-Gly part, suggests that the propeptide structures of the cognate enzymes may not be the best starting point for the design of reverse binding inhibitors.


FEBS Letters ◽  
2000 ◽  
Vol 475 (3) ◽  
pp. 157-162 ◽  
Author(s):  
Jianxing Song ◽  
Ping Xu ◽  
Hui Xiang ◽  
Zhengding Su ◽  
Andrew C. Storer ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
Author(s):  
A.E. Naas ◽  
A.K. MacKenzie ◽  
B. Dalhus ◽  
V.G.H. Eijsink ◽  
P.B. Pope

Abstract Previous gene-centric analysis of a cow rumen metagenome revealed the first potentially cellulolytic polysaccharide utilization locus, of which the main catalytic enzyme (AC2aCel5A) was identified as a glycoside hydrolase (GH) family 5 endo-cellulase. Here we present the 1.8 Å three-dimensional structure of AC2aCel5A and characterization of its enzymatic activities. The enzyme possesses the archetypical (β/α)8-barrel found throughout the GH5 family and contains the two strictly conserved catalytic glutamates located at the C-terminal ends of β-strands 4 and 7. The enzyme is active on insoluble cellulose and acts exclusively on linear β-(1,4)-linked glucans. Co-crystallization of a catalytically inactive mutant with substrate yielded a 2.4 Å structure showing cellotriose bound in the −3 to −1 subsites. Additional electron density was observed between Trp178 and Trp254, two residues that form a hydrophobic “clamp”, potentially interacting with sugars at the +1 and +2 subsites. The enzyme’s active-site cleft was narrower compared to the closest structural relatives, which in contrast to AC2aCel5A, are also active on xylans, mannans and/or xyloglucans. Interestingly, the structure and function of this enzyme seem adapted to less-substituted substrates such as cellulose, presumably due to the insufficient space to accommodate the side-chains of branched glucans in the active-site cleft.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sara Pintar ◽  
Jure Borišek ◽  
Aleksandra Usenik ◽  
Andrej Perdih ◽  
Dušan Turk

AbstractTo achieve productive binding, enzymes and substrates must align their geometries to complement each other along an entire substrate binding site, which may require enzyme flexibility. In pursuit of novel drug targets for the human pathogen S. aureus, we studied peptidoglycan N-acetylglucosaminidases, whose structures are composed of two domains forming a V-shaped active site cleft. Combined insights from crystal structures supported by site-directed mutagenesis, modeling, and molecular dynamics enabled us to elucidate the substrate binding mechanism of SagB and AtlA-gl. This mechanism requires domain sliding from the open form observed in their crystal structures, leading to polysaccharide substrate binding in the closed form, which can enzymatically process the bound substrate. We suggest that these two hydrolases must exhibit unusual extents of flexibility to cleave the rigid structure of a bacterial cell wall.


1998 ◽  
Vol 332 (2) ◽  
pp. 499-505 ◽  
Author(s):  
Ruye XING ◽  
Adele K. ADDINGTON ◽  
Robert W. MASON

A method for quantifying active cysteine proteinases in mammalian cells has been developed using an active-site-directed inhibitor. Fluoren-9-ylmethoxycarbonyl(di-iodotyrosylalanyl)-diazomethane (Fmoc-[I2]Tyr-Ala-CHN2) was prepared and shown to react irreversibly with cathepsins B and L, but not with cathepsin S. The non- and mono-iodo forms of the inhibitor reacted with all three enzymes. These results demonstrate that, unlike cathepsins B and L, cathepsin S has a restricted S2-binding site that cannot accommodate the bulky di-iodotyrosine. Fmoc-[I2]Tyr-Ala-CHN2 was able to penetrate cells and react with active enzymes within the cells. A radiolabelled form of the inhibitor was synthesized and the concentration of functional inhibitor was established by titration with papain. This inhibitor was used to quantify active cysteine proteinases in cultured cells. Active cathepsin B was found to be expressed by all of the cells studied, consistently with a housekeeping role for this enzyme. Active forms of cathepsin L were also expressed by all of the cells, but in different quantities. Two additional proteins were labelled in some of the cells, and these may represent other non-characterized proteinases. Higher levels of active cathepsins B and L, and an unidentified protein of Mr 39000, were found in breast tumour cells that are invasive, compared with those that are not invasive. From the data obtained, it can be calculated that the concentrations of both active cathepsins B and L in lysosomes can be as high as 1 mM, each constituting up to 20% of total protein in the organelle. This new technique provides a more direct procedure for determining the proteolytic potential of cellular lysosomes.


2017 ◽  
Vol 199 (10) ◽  
Author(s):  
Swaminath Srinivas ◽  
John E. Cronan

ABSTRACT FabG performs the NADPH-dependent reduction of β-keto acyl-acyl carrier protein substrates in the elongation cycle of fatty acid synthesis. We report the characterization of a temperature-sensitive mutation (fabGΔ8) in Escherichia coli fabG that results from an in-frame 8-amino-acid residue deletion in the α6/α7 subdomain. This region forms part of one of the two dimerization interfaces of this tetrameric enzyme and is reported to undergo significant conformational changes upon cofactor binding, which define the entrance to the active-site cleft. The activity of the mutant enzyme is extremely thermolabile and is deficient in forming homodimers at nonpermissive temperatures with a corresponding decrease in fatty acid synthesis both in vivo and in vitro. Surprisingly, the fabGΔ8 strain reverts to temperature resistance at a rate reminiscent of that of a point mutant with intragenic pseudorevertants located either on the 2-fold axes of symmetry or at the mouth of the active-site cleft. The fabGΔ8 mutation also confers resistance to the calmodulin inhibitor trifluoperazine and renders the enzyme extremely sensitive to Ca2+ in vitro. We also observed a significant alteration in the lipid A fatty acid composition of fabGΔ8 strains but only in an lpxC background, probably due to alterations in the permeability of the outer membrane. These observations provide insights into the structural dynamics of FabG and hint at yet another point of regulation between fatty acid and lipid A biosynthesis. IMPORTANCE Membrane lipid homeostasis and its plasticity in a variety of environments are essential for bacterial survival. Since lipid biosynthesis in bacteria and plants is fundamentally distinct from that in animals, it is an ideal target for the development of antibacterial therapeutics. FabG, the subject of this study, catalyzes the first cofactor-dependent reduction in this pathway and is active only as a tetramer. This study examines the interactions responsible for tetramerization through the biochemical characterization of a novel temperature-sensitive mutation caused by a short deletion in an important helix-turn-helix motif. The mutant strain has altered phospholipid and lipid A compositions and is resistant to trifluoperazine, an inhibitor of mammalian calmodulin. Understanding its structural dynamics and its influence on lipid A synthesis also allows us to explore lipid homeostasis as a mechanism for antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document