RINGED SEAL (PHOCA HISPIDA) BREEDING IN THE DRIFTING PACK ICE OF THE BARENTS SEA

1999 ◽  
Vol 15 (2) ◽  
pp. 595-598 ◽  
Author(s):  
Oystein Wiig ◽  
Andrew E. Derocher ◽  
Stanislav E. Belikov
1998 ◽  
Vol 1 ◽  
pp. 63 ◽  
Author(s):  
Stanislav E Belikov ◽  
Andrei N Boltunov

This paper presents a review of available published and unpublished material on the ringed seal (Phoca hispida) in the western part of the Russian Arctic, including the White, Barents and Kara seas. The purpose of the review is to discuss the status of ringed seal stocks in relation to their primary habitat, the history of sealing, and a recent harvest of the species in the region. The known primary breeding habitats for this species are in the White Sea, the south-western part of the Barents Sea, and in the coastal waters of the Kara Sea, which are seasonally covered by shore-fast ice. The main sealing sites are situated in the same areas. Female ringed seals become mature by the age of 6, and males by the age of 7. In March-April a female gives birth to one pup in a breeding lair constructed in the shore-fast ice. The most important prey species for ringed seals in the western sector of the Russian Arctic are pelagic fish and crustaceans. The maximum annual sealing level for the region was registered in the first 70 years of the 20th century: the White Sea maximum (8,912 animals) was registered in 1912; the Barents Sea maximum (13,517 animals) was registered in 1962; the Kara Sea maximum (13,200 animals) was registered in 1933. Since the 1970s, the number of seals harvested has decreased considerably. There are no data available for the number of seals harvested annually by local residents for their subsistence.


2021 ◽  
pp. 25-43
Author(s):  
A.E. Rybalko ◽  
◽  
M.Yu. Tokarev ◽  

Hot questions in the modern Quaternary geology of the Arctic seas associated with their glaciation are discussed in this article. The questions of the history of the occurrence of the problem of shelf glaciation or “drift” accumulation of boulder-bearing sediments are considered in detail. The results of seismic-acoustic studies and their interpretation with the aim of seismic stratigraphic and genetic partition of the cover of loose sediments of Quaternary age are considered in detail. Arguments are presented in favor of the continental origin of glaciers (Novaya Zemlya, Ostrovnoy and Scandinavian), which in the late Neopleistocene spread to the shelf of the Barents Sea and occupied its surface to depths of 120−150 m. Further development of glaciation was already due to the expansion of the area of shelves glaciers. The facies zoning of glacial-marine deposits is estimated, which is related to the distance from the front of the glaciers. It is concluded that already at the end of the Late Pleistocene, most of the modern Barents Sea was free from glaciers and from the annual cover of pack ice. Data on the absence of the area distribution of frozen sediment strata within the modern Barents Sea shelf are presented.


1998 ◽  
Vol 1 ◽  
pp. 181 ◽  
Author(s):  
Michael C S Kingsley

The size of the population of ringed seals (Phoca hispida) inhabiting Baffin Bay and associated waters was estimated by two methods. An approximate model of the energetics of the polar bear (Ursus maritimus) estimated an energetic need of about 16,000 MJ/bear per year. Modelled estimates of the energetic yield of a ringed seal population showed that a stable standing population of 140-170 ringed seals per bear would be needed to provide that much energy, assuming that all mortalities were due to polar bear predation. This result was sensitive to assumptions about the Field Metabolic Rate (FMR) of the bears and the energetic yield of individual ringed seals, but less sensitive to assumptions about relative incidence of predation on different age classes of seal or the age structure of the polar bear population. Estimated sizes of polar bear populations in Baffin Bay and associated waters (total about 4,025), and of the standing population needed to support an estimated hunter kill of 100,000 yielded a population estimate of, very roughly, 1.2 million ringed seals. Estimates of ice areas and of the density of hauled out seals from aerial surveys were used to generate another approximate figure for the ringed seal population, which was about the same. The density of seals in the pack-ice area of Baffin Bay, which is imperfectly known, has a large influence on the latter estimate.


1991 ◽  
Vol 69 (7) ◽  
pp. 1857-1861 ◽  
Author(s):  
Michael C. S. Kingsley ◽  
I. Stirling

The ringed seal, Phoca hispida, hauls out at the edge of self-maintained breathing holes or narrow cracks, either in fast ice or in the centre of large floes in pack ice, apparently because this reduces its vulnerability to capture by polar bears, Ursus maritimus. Antipredator behaviour of ringed seals at haul-out sites also includes lying facing both their breathing hole and downwind, and vigilance. The much larger bearded seal, Erignathus barbatus, hauls out on the edges of wide leads or large holes in the ice, or on the points of small ice floes, and also faces both the water and downwind. Ice-associated seals which are not threatened by surface predators do not show these behaviour patterns.


1989 ◽  
Vol 35 (120) ◽  
pp. 224-234 ◽  
Author(s):  
Julian A. Dowdeswell

Abstract The nature of icebergs calved from Svalbard’s 1030 km of tide-water ice cliffs is related to glacier dynamics and morphology. Both iceberg dimensions and rates of relative iceberg production are affected. Valley tide-water glaciers entering fjords typically calve irregular icebergs of <50 m in length. Ice caps and large outlet glaciers, which predominate in eastern Svalbard, yield small, irregular icebergs and large (>500 m length) tabular icebergs which can travel considerable distances before melting. Surge-type ice masses calve very large numbers of small icebergs during short periods of rapid advance, but few icebergs during longer periods of stagnation and retreat between surges. The nature of iceberg interactions with sea ice also influences the timing and pattern of iceberg production. Winter shore-fast ice traps icebergs close to tide-water ice cliffs. They are released as a pulse on spring-time fast-ice break-up. Pack ice damps waves, and therefore increases iceberg stability and reduces the frequency of overturn. Small icebergs often undergo complete melting and sediment release within fjords. Larger icebergs can be trapped close to glacier termini by shallow bedrock or morainic sills, but some larger, tabular icebergs do escape into the Barents Sea. Implications for iceberg rafting of sediments include the production of large numbers of relatively debris-rich icebergs during surges and the absence of floating ice masses. The latter restricts the loss of debris-rich basal ice by undermelt prior to calving.


Author(s):  
Valeriy G. Yakubenko ◽  
Anna L. Chultsova

Identification of water masses in areas with complex water dynamics is a complex task, which is usually solved by the method of expert assessments. In this paper, it is proposed to use a formal procedure based on the application of the method of optimal multiparametric analysis (OMP analysis). The data of field measurements obtained in the 68th cruise of the R/V “Academician Mstislav Keldysh” in the summer of 2017 in the Barents Sea on the distribution of temperature, salinity, oxygen, silicates, nitrogen, and phosphorus concentration are used as a data for research. A comparison of the results with data on the distribution of water masses in literature based on expert assessments (Oziel et al., 2017), allows us to conclude about their close structural similarity. Some differences are related to spatial and temporal shifts of measurements. This indicates the feasibility of using the OMP analysis technique in oceanological studies to obtain quantitative data on the spatial distribution of different water masses.


Sign in / Sign up

Export Citation Format

Share Document