THE VALUE OF MUSCLE BIOPSY IN THE DIAGNOSIS OF CLINICAL ALTERATIONS IN TOTAL BODY WATER, BODY POTASSIUM, AND BODY SODIUM

2006 ◽  
Vol 110 (2) ◽  
pp. 654-660 ◽  
Author(s):  
Francis P. Muldowney
2014 ◽  
Vol 34 (3) ◽  
pp. 253-259 ◽  
Author(s):  
Yijuan Sun ◽  
David Mills ◽  
Todd S. Ing ◽  
Joseph I. Shapiro ◽  
Antonios H. Tzamaloukas

Objective This report presents a method quantitatively analyzing abnormalities of body water and monovalent cations (sodium plus potassium) in patients on peritoneal dialysis (PD) with true hyponatremia. Methods It is well known that in the face of euglycemia serum sodium concentration is determined by the ratio between the sum of total body sodium plus total body potassium on the one hand and total body water on the other. We developed balance equations that enabled us to calculate excesses or deficits, relative to the state of eunatremia and dry weight, in terms of volumes of water and volumes of isotonic solutions of sodium plus potassium when patients presented with hyponatremia. We applied this method retrospectively to 5 episodes of PD-associated hyponatremia (serum sodium concentration 121–130 mEq/L) and compared the findings of the method with those of the clinical evaluation of these episodes. Results Estimates of the new method and findings of the clinical evaluation were in agreement in 4 of the 5 episodes, representing euvolemic hyponatremia (normal total body sodium plus potassium along with water excess) in 1 patient, hypovolemic hyponatremia (deficit of total body sodium plus potassium along with deficit of total body water) in 2 patients, and hypervolemic hyponatremia (excess of total body sodium along with larger excess of total body water) in 1 patient. In the 5th patient, in whom the new method suggested the presence of water excess and a relatively small deficit of monovalent cations, the clinical evaluation had failed to detect the cation deficit. Conclusions Evaluation of imbalances in body water and monovalent cations in PD-associated hyponatremia by the method presented in this report agrees with the clinical evaluation in most instances and could be used as a guide to the treatment of hyponatremia. Prospective studies are needed to test the potential clinical applications of this method.


Author(s):  
Brett S. Nickerson ◽  
Samantha V. Narvaez ◽  
Mitzy I. Juarez ◽  
Stefan A. Czerwinski

Author(s):  
Aaron R. Caldwell ◽  
Megan E. Rosa-Caldwell ◽  
Carson Keeter ◽  
Evan C. Johnson ◽  
François Péronnet ◽  
...  

<b><i>Background:</i></b> Debate continues over whether or not individuals with low total water intake (TWI) are in a chronic fluid deficit (i.e., low total body water) [<xref ref-type="bibr" rid="ref1">1</xref>]. When women with habitually low TWI (1.6 ± 0.5 L/day) increased their fluid intake (3.5 ± 0.1 L/day) for 4 days 24-h urine osmolality decreased, but there was no change in body weight, a proxy for total body water (TBW) [<xref ref-type="bibr" rid="ref2">2</xref>]. In a small (<i>n</i> = 5) study of adult men, there were no observable changes in TBW, as measured by bioelectrical impedance, after increasing TWI for 4 weeks [<xref ref-type="bibr" rid="ref3">3</xref>]. However, body weight increased and salivary osmolality decreased indicating that the study may have been underpowered to detect changes in TBW. Further, no studies to date have measured changes in blood volume (BV) when TWI is increased. <b><i>Objectives:</i></b> Therefore, the purpose of this study was to identify individuals with habitually low fluid intake and determine if increasing TWI, for 14 days, resulted in changes in TBW or BV. <b><i>Methods:</i></b> In order to identify individuals with low TWI, 889 healthy adults were screened. Participants with a self-reported TWI less than 1.8 L/day (men) or 1.2 L/day (women), and a 24-h urine osmolality greater than 800 mOsm were included in the intervention phase of the study. For the intervention phase, 15 participants were assigned to the experimental group and 8 participants were assigned to the control group. The intervention period lasted for 14 days and consisted of 2 visits to our laboratory: one before the intervention (baseline) and 14 days into the intervention (14-day follow-up). At these visits, BV was measured using a CO-rebreathe procedure and deuterium oxide (D<sub>2</sub>O) was administered to measure TBW. Urine samples were collected immediately prior, and 3–8 h after the D<sub>2</sub>O dose to allow for equilibration. Prior to each visit, participants collected 24-h urine to measure 24-h hydration status. After the baseline visit, the experimental group increased their TWI to 3.7 L for males and 2.7 L for females in order to meet the current Institute of Medicine recommendations for TWI. <b><i>Results:</i></b> Twenty-four-hour urine osmolality decreased (−438.7 ± 362.1 mOsm; <i>p</i> &#x3c; 0.001) and urine volume increased (1,526 ± 869 mL; <i>p</i> &#x3c; 0.001) in the experimental group from baseline, while there were no differences in osmolality (−74.7 ± 572 mOsm; <i>p</i> = 0.45), or urine volume (−32 ± 1,376 mL; <i>p</i> = 0.89) in the control group. However, there were no changes in BV (Fig. <xref ref-type="fig" rid="f01">1</xref>a) or changes in TBW (Fig. <xref ref-type="fig" rid="f01">1</xref>b) in either group. <b><i>Conclusions:</i></b> Increasing fluid intake in individuals with habitually low TWI increases 24-h urine volume and decreases urine osmolality but does not result in changes in TBW or BV. These findings are in agreement with previous work indicating that TWI interventions lasting 3 days [<xref ref-type="bibr" rid="ref2">2</xref>] to 4 weeks [<xref ref-type="bibr" rid="ref3">3</xref>] do not result in changes in TBW. Current evidence would suggest that the benefits of increasing TWI are not related changes in TBW.


Author(s):  
Marife A. Rosales ◽  
Maria Gemel B. Palconit ◽  
Argel A. Bandala ◽  
Ryan Rhay P. Vicerra ◽  
Elmer P. Dadios ◽  
...  

1992 ◽  
Vol 32 (5) ◽  
pp. 632-632
Author(s):  
Riccardo E Pfister ◽  
Jean-Léopold Michell ◽  
Yves Schutz ◽  
Eric Jéquier

1993 ◽  
Vol 70 (2) ◽  
pp. 433-438 ◽  
Author(s):  
N. Battistini ◽  
F. Virgili ◽  
G. Bedogni ◽  
G. R. Gambella ◽  
A. Bini

Total body electrical conductivity (TOBEC) is a simple and non-invasive method for the assessment of body composition in vivo. Information regarding the applicability of TOBEC in the condition of abnormal fluid balance is scarce. In the present paper we give the results of the comparison between TOBEC and total body water (TBW; assessed by the tritium dilution technique) in three groups of animals: (1) healthy (n 17), (2) expanded fluid volume by secondary biliary cirrhosis (SBC; n 9) and (3) Fiirosemide®-treated rats (n 9). The TOBEC score and TBW by tritium dilution were found to be highly correlated in the pooled sample (r 0·90) and in normal (r 0.·87), SBC (r 0·73) and Furosemide-treated (r 0·89) rats. However, the relationship between TOBEC and TBW, described by least-squares regression analysis, was found to be similar for SBC and normal rats but was significantly different for Furosemide-treated and normal rats. These findings suggest that TOBEC is unable to track TBW accurately when the ratio between intracellular and extracellular water is chronically or acutely altered.


Sign in / Sign up

Export Citation Format

Share Document