In Vitro and in vivo Protein Oxidation Induced by Alzheimer's Disease Amyloid beta-Peptide (1-42)

1999 ◽  
Vol 893 (1 OXIDATIVE/ENE) ◽  
pp. 265-268 ◽  
Author(s):  
D. ALLAN BUTTERFIELD ◽  
SERVET M. YATIN ◽  
CHRISTOPHER D. LINK
2004 ◽  
Vol 91 (3) ◽  
pp. 648-656 ◽  
Author(s):  
Yuanbin Liu ◽  
Richard Dargusch ◽  
Cindy Banh ◽  
Carol A. Miller ◽  
David Schubert

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yara Hassaan ◽  
Heba Handoussa ◽  
Ahmed H. El-Khatib ◽  
Michael W. Linscheid ◽  
Nesrine El Sayed ◽  
...  

Epidemiological studies have proven an association between consumption of polyphenols and prevention of Alzheimer’s disease, the most common form of dementia characterized by extracellular deposition of amyloid beta plaques. The aim of this study is pharmacological screening of the aqueous alcohol extract ofMarkhamia platycalyxleaves,Schotia brachypetalaleaves and stalks, and piceatannol compared to aqueous alcohol extract ofCamellia sinensisleaves as potential Alzheimer’s disease drugs. LC-HRESI(-ve)-MSnwas performed to identify phenolics’ profile ofSchotia brachypetalastalks aqueous alcohol extract and revealed ten phenolic compounds as first report: daidzein, naringin, procyanidin isomers, procyanidin dimer gallate, quercetin 3-O-rhamnoside, quercetin 3-O-glucuronide, quercetin hexose gallic acid, quercetin hexose protocatechuic acid, and ellagic acid. Alzheimer’s disease was induced by a single intraperitoneal injection of LPS. Adult male Swiss albino mice were divided into groups of 8–10 mice each receiving treatment for six days.In vivobehavioral tests (Y maze and object recognition) andin vitroestimation of amyloid beta 42 by ELISA showed significant differences between results of treated and nontreated animals.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1275
Author(s):  
Soo Yong Park ◽  
Joo Yeong Kang ◽  
Taehee Lee ◽  
Donggyu Nam ◽  
Chang-Jin Jeon ◽  
...  

Alzheimer’s disease (AD) is a complex, age-related neurodegenerative disease that is the most common form of dementia. However, the cure for AD has not yet been founded. The accumulation of amyloid beta (Aβ) is considered to be a hallmark of AD. Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), also known as beta secretase is the initiating enzyme in the amyloidogenic pathway. Blocking BACE1 could reduce the amount of Aβ, but this would also prohibit the other functions of BACE1 in brain physiological activity. SPONDIN1 (SPON1) is known to bind to the BACE1 binding site of the amyloid precursor protein (APP) and blocks the initiating amyloidogenesis. Here, we show the effect of SPON1 in Aβ reduction in vitro in neural cells and in an in vivo AD mouse model. We engineered mouse induced neural stem cells (iNSCs) to express Spon1. iNSCs harboring mouse Spon1 secreted SPON1 protein and reduced the quantity of Aβ when co-cultured with Aβ-secreting Neuro 2a cells. The human SPON1 gene itself also reduced Aβ in HEK 293T cells expressing the human APP transgene with AD-linked mutations through lentiviral-mediated delivery. We also demonstrated that injecting SPON1 reduced the amount of Aβ and ameliorated cognitive dysfunction and memory impairment in 5xFAD mice expressing human APP and PSEN1 transgenes with five AD-linked mutations.


Sign in / Sign up

Export Citation Format

Share Document