Carbon balance in grapevines under different soil water supply: importance of whole plant respiration

2012 ◽  
Vol 18 (3) ◽  
pp. 308-318 ◽  
Author(s):  
J.M. ESCALONA ◽  
M. TOMÀS ◽  
S. MARTORELL ◽  
H. MEDRANO ◽  
M. RIBAS-CARBO ◽  
...  
2019 ◽  
Author(s):  
Alessio Collalti ◽  
Mark G. Tjoelker ◽  
Günter Hoch ◽  
Annikki Mäkelä ◽  
Gabriele Guidolotti ◽  
...  

AbstractTwo simplifying hypotheses have been proposed for whole-plant respiration. One links respiration to photosynthesis; the other to biomass. Using a first-principles carbon balance model with a prescribed live woody biomass turnover, applied at a forest research site where multidecadal measurements are available for comparison, we show that if turnover is fast the accumulation of respiring biomass is low and respiration depends primarily on photosynthesis; while if turnover is slow the accumulation of respiring biomass is high and respiration depends primarily on biomass. But the first scenario is inconsistent with evidence for substantial carryover of fixed carbon between years, while the second implies far too great an increase in respiration during stand development – leading to depleted carbohydrate reserves and an unrealistically high mortality risk. These two mutually incompatible hypotheses are thus both incorrect. Respiration isnotlinearly related either to photosynthesis or to biomass, but it is more strongly controlled by recent photosynthates (and reserve availability) than by total biomass.


Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 596-604
Author(s):  
Logan G. Vaughn ◽  
Mark L. Bernards ◽  
Timothy J. Arkebauer ◽  
John L. Lindquist

The supply of soil resources is critical for the establishment and long-term competitive success of a plant species. Although there is considerable research on the effects of water supply on crop growth and productivity, there is little published research on the comparative response of crops and weeds to limiting soil water supply. The objective of this research was to determine the growth and transpiration efficiency of corn and velvetleaf at three levels of water supply. One corn or velvetleaf plant was grown in a large pot lined with plastic bags. When seedlings reached 10 cm, bags were sealed around the base of the plant, so the only water loss was from transpiration. Daily transpiration was measured by weighing the pots at the same time each day. The experiment was conducted in the fall of 2007 and in the spring of 2008. Four replicates of each species–water treatment were harvested periodically to determine biomass accumulation and leaf area. The relationship between cumulative aboveground biomass and water transpired was described using a linear function in which the slope defined the transpiration efficiency (TE). Corn TE was greater than velvetleaf TE in all treatments during both trials. In the fall trial, corn TE was 6.3 g kg–1, 47% greater than that of velvetleaf TE. In the spring trial, TEs of both species were lower overall, and corn TE increased with declining water supply. Corn produced more biomass and leaf area than velvetleaf did at all water-supply levels. Velvetleaf partitioned more biomass to roots compared with shoots during early growth than corn did. The ability of corn to generate more leaf area and its investment in a greater proportion of biomass into root growth at all levels of water supply may enable it to more-effectively avoid velvetleaf interference under all levels of soil-water supply.


2021 ◽  
Vol 118 (43) ◽  
pp. e2112825118
Author(s):  
Giovanni Bortolami ◽  
Gregory A. Gambetta ◽  
Cédric Cassan ◽  
Silvina Dayer ◽  
Elena Farolfi ◽  
...  

In the context of climate change, plant mortality is increasing worldwide in both natural and agroecosystems. However, our understanding of the underlying causes is limited by the complex interactions between abiotic and biotic factors and the technical challenges that limit investigations of these interactions. Here, we studied the interaction between two main drivers of mortality, drought and vascular disease (esca), in one of the world’s most economically valuable fruit crops, grapevine. We found that drought totally inhibited esca leaf symptom expression. We disentangled the plant physiological response to the two stresses by quantifying whole-plant water relations (i.e., water potential and stomatal conductance) and carbon balance (i.e., CO2 assimilation, chlorophyll, and nonstructural carbohydrates). Our results highlight the distinct physiology behind these two stress responses, indicating that esca (and subsequent stomatal conductance decline) does not result from decreases in water potential and generates different gas exchange and nonstructural carbohydrate seasonal dynamics compared to drought.


2020 ◽  
Vol 461 ◽  
pp. 117948 ◽  
Author(s):  
Xiao-Jin Jiang ◽  
Sissou Zakari ◽  
Junen Wu ◽  
Ashutosh Kumar Singh ◽  
Chunfeng Chen ◽  
...  

Weed Science ◽  
1994 ◽  
Vol 42 (3) ◽  
pp. 333-339 ◽  
Author(s):  
Carlos J. Fernandez ◽  
Kevin J. McInnes ◽  
J. Tom Cothren

Whole plant studies were conducted to examine the effects of glyphosate on components of carbon balance, transpiration, and biomass partitioning of wheat plants grown in Olton sandy clay loam soil and in a well-aerated fritted clay medium under controlled environmental conditions. Well-irrigated plants were transferred from a nursery room into a test chamber about 48 d after planting. Two to five days later, 12 to 42 ml of a glyphosate solution with a concentration of 480 mg ai L–1were sprayed until full coverage of the foliage. Environmental conditions in the chamber were air temperature 25 C, dew point 18 C, windspeed 1.1 m s–1, and PPFD 1500 mmol m–2s–1(at the top of the foliage) for 12 h daily. Glyphosate treatment resulted in destruction of the root system, as determined at the end of the tests, and at the start of tests using companion plants. Plants grown in soil lost 0.53 kg kg–1of the initial root mass, while this loss was 0.38 kg kg–1in plants grown in fritted clay. Glyphosate treatment rapidly inhibited daily rates of gross carbon uptake and transpiration of wheat plants grown in both media. Effects occurred more than twice as rapidly in plants grown in soil as in fritted day. Similarity in the patterns of inhibition of gross carbon uptake and transpiration suggests that glyphosate may also affect leaf stomata. After applying glyphosate, daily rates of carbon loss increased for 3 d in soil-grown plants but remained almost constant for 10 d in plants grown in fritted clay; thereafter, the rates of carbon loss declined. The early increase or the constancy of carbon loss observed after applying glyphosate was related to catabolic processes occurring in roots.


Sign in / Sign up

Export Citation Format

Share Document