Corn and Velvetleaf (Abutilon theophrasti) Growth and Transpiration Efficiency under Varying Water Supply

Weed Science ◽  
2016 ◽  
Vol 64 (4) ◽  
pp. 596-604
Author(s):  
Logan G. Vaughn ◽  
Mark L. Bernards ◽  
Timothy J. Arkebauer ◽  
John L. Lindquist

The supply of soil resources is critical for the establishment and long-term competitive success of a plant species. Although there is considerable research on the effects of water supply on crop growth and productivity, there is little published research on the comparative response of crops and weeds to limiting soil water supply. The objective of this research was to determine the growth and transpiration efficiency of corn and velvetleaf at three levels of water supply. One corn or velvetleaf plant was grown in a large pot lined with plastic bags. When seedlings reached 10 cm, bags were sealed around the base of the plant, so the only water loss was from transpiration. Daily transpiration was measured by weighing the pots at the same time each day. The experiment was conducted in the fall of 2007 and in the spring of 2008. Four replicates of each species–water treatment were harvested periodically to determine biomass accumulation and leaf area. The relationship between cumulative aboveground biomass and water transpired was described using a linear function in which the slope defined the transpiration efficiency (TE). Corn TE was greater than velvetleaf TE in all treatments during both trials. In the fall trial, corn TE was 6.3 g kg–1, 47% greater than that of velvetleaf TE. In the spring trial, TEs of both species were lower overall, and corn TE increased with declining water supply. Corn produced more biomass and leaf area than velvetleaf did at all water-supply levels. Velvetleaf partitioned more biomass to roots compared with shoots during early growth than corn did. The ability of corn to generate more leaf area and its investment in a greater proportion of biomass into root growth at all levels of water supply may enable it to more-effectively avoid velvetleaf interference under all levels of soil-water supply.

1984 ◽  
Vol 32 (4) ◽  
pp. 387 ◽  
Author(s):  
EW Pook

The canopy dynamics of a regenerated 16-year-old stand of pole and sapling E. maculata were studied for 2½ years by repetitive non-destructive measurements in tree crowns accessed from a 20 m high scaffold tower. Average canopy leaf area density over a sample plot of 36 m2 was 0.23 m2 m-3 at a leaf area index of 4.3. Some 75% of leaf area was held in the canopies of overstorey eucalypts above 10 m in height. Average size of leaves increased gradually from top to bottom of tree canopies. Foliage production was usually concentrated in the upper crowns of trees where there was a higher proportion of active shoots, more frequent growth flushes and more rapid turnover of leaves than in lower canopy layers. Leaf area in the upper canopy fluctuated widely but increased in the long term, in mid canopy was more or less maintained and in lowest canopy declined. Crops of developing flower buds present on uppermost branches delayed and/or reduced shoot growth. Foliage production occurred in all months of the year. There was a unimodal annual rhythm of growth rate reaching a maximum in summer and a minimum in winter. Variable water supply, however, influenced production to peak in spring, summer or autumn. No shoot growth occurs in E. maculata at Kioloa when daily mean temperature (averaged for weekly intervals) falls below c. 10½C in winter. An upper temperature limit for growth could not be defined. The species apparently lacks dormancy mechanisms. Shoot growth is 'opportunistic' and occurs whenever environmental conditions are favourable. Patterns of leaf production and leaf fall were variable but peaks showed a general synchrony. Leaf fall, however, tended to lag behind leaf production. Leaves of all ages were shed but main losses were from older cohorts. Some 49% (s.d.±18%) of new leaves were lost while still small or immature, mainly during periods of vigorous shoot growth or low water supply. Browse of immature foliage was light. Normal senescence and leaf fall accounted for almost the entire loss of mature foliage.


1992 ◽  
Vol 43 (7) ◽  
pp. 1527 ◽  
Author(s):  
PS Carberry ◽  
RC Muchow

NTKENAF (Version 1.1) is a computer model which simulates the growth of kenaf (Hibiscus cannabinus L.) under rainfed conditions in tropical Australia. In daily time-steps, the model simulates the phenology, leaf area development, biomass accumulation and partitioning, soil water balance and dry matter yields of kenaf plants based on climatic and management inputs. The model assumes adequate nutrition and no effect of pests and diseases. The model uses daily maximum and minimum temperature, solar radiation and rainfall. The duration from sowing to flowering is predicted using temperature and photoperiod. Leaf growth is described as a function of node production (as determined by temperature), leaf area per node and leaf area senescence. Potential daily biomass is predicted from leaf area index, the light extinction coefficient and radiation use efficiency, and partitioned to the economic stem yield. Soil evaporation is predicted using a two-stage evaporation model, and plant transpiration is predicted from the daily biomass accumulation, a transpiration efficiency coefficient and predicted daily vapour pressure deficit. Plant extractable soil water is dependent on the available soil water range for each depth increment, the extraction front velocity, and the extent of water extraction at each depth. Daily transpiration and leaf growth are decreased below potential values once the fraction of available soil water declines below a threshold value. NTKENAF V1.1 has been validated against observed data from kenaf experiments conducted at two sites (lat. 13�48'S. and 14�28'S.) in northern Australia. The predictive accuracy of the model was good over a range in above-ground biomass up to 25 000 kg ha-1 (n = 40, r2 = 0.94, root mean square deviation = 1716 kg ha-1). Validations were also undertaken for predictions of the core and bark stem components, leaf area index and plant extractable soil water contents. The development of NTKENAF has provided a tool which can greatly aid assessment of the feasibility of a fibre industry based on kenaf in northern Australia.


Weed Science ◽  
2011 ◽  
Vol 59 (1) ◽  
pp. 50-54 ◽  
Author(s):  
Jared J. Schmidt ◽  
Erin E. Blankenship ◽  
John L. Lindquist

Soil water availability is the most important factor limiting crop yield worldwide. Understanding crop and weed transpiration in response to water supply may provide valuable insight into the mechanisms of crop yield loss in water-limited environments. A greenhouse experiment was conducted to quantify corn and velvetleaf transpiration in response to drying soil. Five plants of each species were well watered by adding back the equivalent water loss each day to reach field capacity, and five plants were subjected to drought stress (dry-down) by not replacing lost water. Normalized daily transpiration of dry-down plants was regressed on soil water content expressed as the fraction of transpirable soil water (FTSW). The critical soil water content below which plants begin to close their stomates occurred at FTSWcr= 0.36 ± 0.015 for corn and 0.41 ± 0.018 for velvetleaf. Total water transpired did not differ among species. Velvetleaf also responded to drought by senescing its oldest leaves, whereas corn mainly maintained its leaf area but with rolled leaves during peak drought stress. During a short-term drought, corn is expected to perform better than velvetleaf because it maintains full transpiration to a lower FTSW and does not senesce its leaves. Under severe long-term drought, the species that closes its stomates at greater FTSWcrwill conserve water and increase its chances of survival. Moreover, senescing all but the youngest leaves may ensure at least some seed production. Research is needed to evaluate the effects of soil water supply on corn–velvetleaf interference in the field.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lucy Egan ◽  
Rainer Hofmann ◽  
Shirley Nichols ◽  
Jonathan Hadipurnomo ◽  
Valerio Hoyos-Villegas

Determining the performance of white clover cultivars under drought conditions is critical in dry climates. However, comparing the differences in cultivar performance requires equivalent soil water content for all plants, to reduce the water deficit threshold eliciting stomatal closure. In this study, the objective was to compare the rate of stomatal closure in eighty white clover cultivars in response to soil drying. Two glasshouse experiments were conducted, and the daily transpiration rate was measured by weighing each pot. The transpiration rate of the drought-stressed plants were normalized against the control plants to minimize effects from transpiration fluctuations and was recorded as the normalized transpiration rate (NTR). The daily soil water content was expressed as the fraction of transpirable soil water (FTSW). The FTSW threshold (FTSWc) was estimated after which the NTR decreases linearly. The FTSWc marks the critical point where the stomata start to close, and transpiration decreases linearly. The significant difference (p < 0.05) between the 10 cultivars with the highest and lowest FTSWc demonstrates the cultivars would perform better in short- or long-term droughts.


Author(s):  
Muhammad Zeeshan Mehmood ◽  
Ghulam Qadir ◽  
Obaid Afzal ◽  
Atta Mohi Ud Din ◽  
Muhammad Ali Raza ◽  
...  

AbstractSeveral biotic and abiotic stresses significantly decrease the biomass accumulation and seed yield of sesame crops under rainfed areas. However, plant growth regulators (such as Paclobutrazol) can improve the total dry matter and seed production of the sesame crop. The effects of the paclobutrazol application on dry matter accumulation and seed yield had not been studied before in sesame under rainfed conditions. Therefore, a two-year field study during 2018 and 2019 was conducted with key objectives to assess the impacts of paclobutrazol on leaf greenness, leaf area, total dry matter production and partitioning, seed shattering, and seed yield of sesame. Two sesame cultivars (TS-5 and TS-3) were treated with four paclobutrazol concentrations (P0 = Control, P1 = 100 mg L−1, P2 = 200 mg L−1, P3 = 300 mg L−1). The experiment was executed in RCBD-factorial design with three replications. Compared with P0, treatment P3 improved the leaf greenness of sesame by 17%, 38%, and 60% at 45, 85, and 125 days after sowing, respectively. However, P3 treatment decreased the leaf area of sesame by 14% and 20% at 45 and 85 days after sowing than P0, respectively. Compared with P0, treatment P3 increased the leaf area by 46% at 125 days after sowing. On average, treatment P3 also improved the total biomass production by 21% and partitioning in roots, stems, leaves, capsules, and seeds by 23%, 19%, 23%, 22%, and 40%, respectively, in the whole growing seasons as compared to P0. Moreover, under P3 treatment, sesame attained the highest seed yield and lowest seed shattering by 27% and 30%, respectively, compared to P0. This study indicated that by applying the paclobutrazol concentration at the rate of 300 mg L−1 in sesame, the leaf greenness, leaf areas, biomass accumulation, partitioning, seed yield, and shatter resistance could be improved. Thus, the optimum paclobutrazol level could enhance the dry matter accumulation and seed production capacity of sesame by decreasing shattering losses under rainfed conditions.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 563
Author(s):  
Esther Anokye ◽  
Samuel T. Lowor ◽  
Jerome A. Dogbatse ◽  
Francis K. Padi

With increasing frequency and intensity of dry spells in the cocoa production zones of West Africa, strategies for mitigating impact of water stress on cocoa seedling survival are urgently required. We investigated the effects of applied potassium on biomass accumulation, physiological processes and survival of cocoa varieties subjected to water stress in pot experiments in a gauzehouse facility. Four levels of potassium (0, 1, 2, or 3 g/plant as muriate of potash) were used. Soil water stress reduced plant biomass accumulation (shoot and roots), relative water content (RWC), chlorophyll content and fluorescence. Leaf phenol and proline contents were increased under water stress. Additionally, compared to the well-watered conditions, soils under water stress treatments had higher contents of exchangeable potassium and available phosphorus at the end of the experimental period. Potassium applied under well-watered conditions reduced leaf chlorophyll content and fluorescence and increased leaf electrolyte leakage, but improved the growth and integrity of physiological functions under soil water stress. Potassium addition increased biomass partitioning to roots, improved RWC and leaf membrane stability, and significantly improved cocoa seedling survival under water stress. Under water stress, the variety with the highest seedling mortality accumulated the highest contents of phenol and proline. A significant effect of variety on plant physiological functions was observed. Generally, varieties with PA 7 parentage had higher biomass partitioning to roots and better seedling survival under soil moisture stress. Proportion of biomass partitioned to roots, RWC, chlorophyll fluorescence and leaf electrolyte leakage appear to be the most reliable indicators of cocoa seedling tolerance to drought.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1511
Author(s):  
Jung-Ryel Choi ◽  
Il-Moon Chung ◽  
Se-Jin Jeung ◽  
Kyung-Su Choo ◽  
Cheong-Hyeon Oh ◽  
...  

Climate change significantly affects water supply availability due to changes in the magnitude and seasonality of runoff and severe drought events. In the case of Korea, despite high water supply ratio, more populations have continued to suffer from restricted regional water supplies. Though Korea enacted the Long-Term Comprehensive Water Resources Plan, a field survey revealed that the regional government organizations limitedly utilized their drought-related data. These limitations present a need for a system that provides a more intuitive drought review, enabling a more prompt response. Thus, this study presents a rating curve for the available number of water intake days per flow, and reviews and calibrates the Soil and Water Assessment Tool (SWAT) model mediators, and found that the coefficient of determination, Nash–Sutcliffe efficiency (NSE), and percent bias (PBIAS) from 2007 to 2011 were at 0.92, 0.84, and 7.2%, respectively, which were “very good” levels. The flow recession curve was proposed after calculating the daily long-term flow and extracted the flow recession trends during days without precipitation. In addition, the SWAT model’s flow data enables the quantitative evaluations of the number of available water intake days without precipitation because of the high hit rate when comparing the available number of water intake days with the limited water supply period near the study watershed. Thus, this study can improve drought response and water resource management plans.


1992 ◽  
Vol 26 (10) ◽  
pp. 2005-2011 ◽  
Author(s):  
Claus Beier ◽  
Karin Hansen ◽  
Per Gundersen ◽  
Bjoern R. Andersen ◽  
Lennart Rasmussen
Keyword(s):  

2007 ◽  
Vol 63 (4) ◽  
pp. 1041-1053
Author(s):  
Koichiro DANNO ◽  
Makoto KIMURA ◽  
Yugo SUZUKI
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document