scholarly journals Rietveld analysis of X-ray powder diffraction patterns as a potential tool for the identification of impact-deformed carbonate rocks

2009 ◽  
Vol 44 (11) ◽  
pp. 1695-1706 ◽  
Author(s):  
Sarah A. Huson ◽  
Franklin F. Foit ◽  
A. John Watkinson ◽  
Michael C. Pope
2003 ◽  
Vol 18 (1) ◽  
pp. 32-35 ◽  
Author(s):  
Yanan Xiao ◽  
Fujio Izumi ◽  
Timothy Graber ◽  
P. James Viccaro ◽  
Dale E. Wittmer

A computer program for refining anomalous scattering factors using x-ray powder diffraction data was revised on the basis of the latest version of a versatile pattern-fitting system, RIETAN-2000. The effectiveness of the resulting program was confirmed by applying it to simulated and measured powder-diffraction patterns of Mn3O4 taken at a synchrotron light source.


2003 ◽  
Vol 18 (3) ◽  
pp. 236-239 ◽  
Author(s):  
L. Marosi ◽  
J. Cifré ◽  
C. Otero Areán

The new heteropoly blue compound (MoO2)0.5PMo14O42, which is relevant in the context of catalytic activity of heteropoly-molybdates, was prepared by controlled thermolysis of (NH4)3PMo12O40 at 730 K in a nitrogen atmosphere. Powder X-ray diffraction analysis showed that this compound has a cubic unit cell, space group Pn3m (No. 224), with ao=11.795(2) Å, Z=2 and DXR=4.2466 g cm−3. Computer modeling and Rietveld analysis of powder diffraction patterns led to a proposed structure of the corresponding Keggin-cage unit PMo14O42.


1999 ◽  
Vol 14 (2) ◽  
pp. 106-110 ◽  
Author(s):  
Yanan Xiao ◽  
Shinjiro Hayakawa ◽  
Yohichi Gohshi ◽  
Masaharu Oshima ◽  
Fujio Izumi ◽  
...  

In order to exploit X-ray powder spectro-diffractometry, the program RIETAN-97ß for refining crystal structure and lattice parameters by the Rietveld method was modified extensively. The resulting software can be used to refine anomalous scattering factors, fr and fi, for specified crystallographic sites near the X-ray absorption edge of a particular element. The effectiveness of the modified software was tested by using powder diffraction patterns simulated by the original RIETAN-97ß software and a series of measured powder diffraction patterns of Fe3O4 with incident X-ray energies near the absorption edge of iron.


1991 ◽  
Vol 70 (10) ◽  
pp. 6122-6124 ◽  
Author(s):  
V. Psycharis ◽  
M. Anagnostou ◽  
C. Christides ◽  
D. Niarchos

2018 ◽  
Vol 33 (4) ◽  
pp. 279-286
Author(s):  
W. Wong-Ng ◽  
J. A. Kaduk ◽  
S. H. Lapidus ◽  
L. Ribaud ◽  
S. P. Diwanji

A series of double-perovskite oxides, Sr2RNbO6 (R = Sm, Gd, Dy, Ho, Y, Tm, and Lu) were prepared and their crystal structure and powder diffraction reference patterns were determined using the Rietveld analysis technique. The crystal structure of each of the Sr2RNbO6 phase is reported in this paper. The R = Gd, Ho, and Lu samples were studied using synchrotron radiation, while R = Sm, Dy, Y, and Tm samples were studied using laboratory X-ray diffraction. Members of Sr2RNbO6 are monoclinic with a space group of P21/n and are isostructural with each other. Following the trend of “lanthanide contraction”, from R = Sm to Lu, the lattice parameters “a” of these compounds decreases from 5.84672(10) to 5.78100(3) Å, b from 5.93192(13) to 5.80977(3) Å, c from 8.3142(2) to 8.18957(5) Å, and V decreases from 288.355(11) to 275.057(2) Å3. In this double-perovskite series, the R3+ and Nb5+ ions are structurally ordered. The average Nb–O bond length is nearly constant, while the average R–O bond length decreases with the decreasing ionic radius of R3+. Powder diffraction patterns for these compounds have been submitted to the Powder Diffraction File (PDF).


2006 ◽  
Vol 21 (3) ◽  
pp. 214-219 ◽  
Author(s):  
Abderrahim Aatiq ◽  
Btissame Haggouch ◽  
Rachid Bakri ◽  
Youssef Lakhdar ◽  
Ismael Saadoune

Structures of two K2SnX(PO4)3(X=Fe,Yb) phosphates, obtained by conventional solid state reaction techniques at 950 °C, were determined at room temperature by X-ray powder diffraction using Rietveld analysis. The two materials exhibit the langbeinite-type structure (P213 space group, Z=4). Cubic unit cell parameter values are: a=9.9217(4) Å and a=10.1583(4) Å for K2SnFe(PO4)3 and K2SnYb(PO4)3, respectively. Structural refinements show that the two crystallographically independent octahedral sites (of symmetry 3) have a mixed Sn∕X (X=Fe,Yb) population although ordering is stronger in the Yb phase than in the Fe phase.


Clay Minerals ◽  
1982 ◽  
Vol 17 (4) ◽  
pp. 393-399
Author(s):  
C. E. Corbato ◽  
R. T. Tettenhorst

AbstractQuantitative estimates were made by visually matching computer-simulated with experimental X-ray powder diffractometer patterns for two samples. One was a natural mixture of dickite and nacrite in about equal proportions. The second sample contained mostly quartz with corundum and mullite in small (0.5–1%) amounts. Percentages deduced from pattern matching agreed to within ±10% of the weight fractions of the components determined by an alternative method of analysis.


Sign in / Sign up

Export Citation Format

Share Document