Glass with hydration‐induced compressive stress profiles

Author(s):  
Timothy M. Gross ◽  
Jingshi Wu ◽  
Emily M. Aaldenberg ◽  
Zheming Zheng ◽  
Adam R. Sarafian ◽  
...  
Author(s):  
D W McMillan ◽  
D S McNally ◽  
G Garbutt ◽  
M A Adams

This paper evaluates a technique for measuring the distribution of compressive stress within cadaveric intervertebral discs. A strain-gauged pressure transducer, side-mounted near the tip of a 1.3 mm diameter needle, was inserted into cubes of disc tissue and into intact discs. Regardless of the position and orientation of the transducer within the tissue or disc, its output was found to be proportional to the compressive force applied to the specimen. The distribution of compressive stress was measured by pulling the instrumented needle through the specimen and the resulting stress profiles were reproducible to within 20 per cent. Profiles obtained at different applied loads showed a similar distribution of stress within the disc, suggesting that the compressive stress at any location and direction increased in proportion to the applied load. Since transducer output was also proportional to applied load, it was reasoned that it must be proportional to compressive stress within the disc. The average vertical compressive stresses acting on various regions within a disc were calculated from the stress profiles and multiplied by the cross-sectional area of each region: the resulting force was then compared with the known applied force in order to assess the calibration coefficient of the transducer. Agreement between the two forces was good, indicating that the calibration coefficient established in a saline bath was applicable to disc tissues also. However, artifactual stress peaks could be generated if the transducer was pulled across a bony asperity. It is concluded that the transducer measures the mean compressive stress acting upon it within disc tissues. Errors associated with the technique are small compared to differences in stress distributions which occur naturally, for example when intervertebral discs are loaded to simulate different postures in a living person.


2014 ◽  
Vol 394-395 ◽  
pp. 6-8 ◽  
Author(s):  
Lynn M. Thirion ◽  
Elena Streltsova ◽  
Wen-Ya Lee ◽  
Zhenan Bao ◽  
Mingqian He ◽  
...  

1992 ◽  
Vol 7 (3) ◽  
pp. 765-771 ◽  
Author(s):  
Rajan Tandon ◽  
David J. Green

Rising T- (or R-) curve behavior is increasingly being used in order to improve the mechanical reliability of ceramic materials. In this study, the possibility of inducing such behavior using residual compressive stresses is analyzed. The T-curves obtained for certain residual stress profiles induce crack stability when the stress minima (compressive stress maxima) lie away from the surface of the sample. The consequences of this stabilization on the strength characteristics are a significant reduction in the strength variability and strength insensitivity to the initial flaw size. In addition to these desirable features, considerable strengthening is also obtained. Hence, suitably engineered compressive stress profiles are shown to be a novel and alternative means of enhancing mechanical reliability.


Author(s):  
M. E. Twigg ◽  
E. D. Richmond ◽  
J. G. Pellegrino

For heteroepitaxial systems, such as silicon on sapphire (SOS), microtwins occur in significant numbers and are thought to contribute to strain relief in the silicon thin film. The size of this contribution can be assessed from TEM measurements, of the differential volume fraction of microtwins, dV/dν (the derivative of the microtwin volume V with respect to the film volume ν), for SOS grown by both chemical vapor deposition (CVD) and molecular beam epitaxy (MBE).In a (001) silicon thin film subjected to compressive stress along the [100] axis , this stress can be relieved by four twinning systems: a/6[211]/( lll), a/6(21l]/(l1l), a/6[21l] /( l1l), and a/6(2ll)/(1ll).3 For the a/6[211]/(1ll) system, the glide of a single a/6[2ll] twinning partial dislocation draws the two halves of the crystal, separated by the microtwin, closer together by a/3.


2019 ◽  
Vol 139 (4) ◽  
pp. 190-196
Author(s):  
Shinya Urata ◽  
Yoshitaka Maeda ◽  
Hideo Nakai ◽  
Yuuya Takeuchi ◽  
Kyyoul Yun ◽  
...  

Author(s):  
Ana Claudia Dal Prá Vasata ◽  
Paulo Rogério Novak ◽  
Fabiano Ostapiv
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document