Real‐time qPCR to evaluate bacterial contamination of cosmetic cream and the efficiency of protective ingredients

Author(s):  
C. Bermond ◽  
S. Cherrad ◽  
A. Trainoy ◽  
C. Ngari ◽  
V. Poulet
2021 ◽  
Vol 9 (4) ◽  
pp. 765
Author(s):  
Janika Wolff ◽  
Martin Beer ◽  
Bernd Hoffmann

Outbreaks of the three capripox virus species, namely lumpy skin disease virus, sheeppox virus, and goatpox virus, severely affect animal health and both national and international economies. Therefore, the World Organization for Animal Health (OIE) classified them as notifiable diseases. Until now, discrimination of capripox virus species was possible by using different conventional PCR protocols. However, more sophisticated probe-based real-time qPCR systems addressing this issue are, to our knowledge, still missing. In the present study, we developed several duplex qPCR assays consisting of different types of fluorescence-labelled probes that are highly sensitive and show a high analytical specificity. Finally, our assays were combined with already published diagnostic methods to a diagnostic workflow that enables time-saving, reliable, and robust detection, differentiation, and characterization of capripox virus isolates.


2014 ◽  
Vol 8 (1) ◽  
pp. 228-237 ◽  
Author(s):  
Jiali Ren ◽  
Yibo Zhou ◽  
Yuting Zhou ◽  
Chao Zhou ◽  
Zhonghai Li ◽  
...  

2015 ◽  
Vol 88 (1) ◽  
pp. 115-119 ◽  
Author(s):  
William A. Glover ◽  
Ederlyn E. Atienza ◽  
Shannon Nesbitt ◽  
Woo J. Kim ◽  
Jared Castor ◽  
...  
Keyword(s):  
Bk Virus ◽  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Badr Khbouz ◽  
François Lallemand ◽  
Pascal Rowart ◽  
Laurence Poma ◽  
Agnès Noel ◽  
...  

Abstract Background and Aims Whole-body irradiation has been suggested to induce renal ischemic preconditioning (RIP) in rodent models, possibly via neo-angiogenesis. First, we comprehensively investigate the pathways involved in kidney-centered irradiation. Next, we assess the functional and structural impact of kidney-centered irradiation applied before ischemia/reperfusion (I/R) injury. Finally, we test whether Sunitinib-mediated inhibition of the neo-angiogenesis prevents irradiation-associated RIP. Method Experiment 1: Unilateral irradiation of the left kidney (8.56 Gy) was performed in male 10-week-old wild-type C57bl/6 mice (n=10). One month later, total kidney RNA was extracted from irradiated and control (n=5) mice for comparative high-throughput RNA-Seq (using BaseSpace Sequence Hub Illumina). Functional enrichment analysis was performed using Database for Annotation, Visualization and Integrated Discovery (DAVID). Experiment 2: Two x-ray beams (225Kv, 13mA) specifically targeted both kidneys for a total dose of 8.56Gy. The right kidneys were removed and harvested, and the left kidneys undergo 30-minute ischemia followed by 48-hour reperfusion (n=8) at Days 7-14-21-28 post irradiation. Experiment 3: Following the same protocol of renal I/R at Day14, 3 groups of male 10-week-old wild-type C57bl/6 mice were compared (n=8 per group): 1/ bilateral pre-irradiation; 2/ bilateral pre-irradiation and gavage with Sunitinib from Day2 to Day13; 3/ control group without irradiation or gavage. Results Experiment 1: Comparative transcriptomics showed a significant up-regulation of various signaling pathways, including angiogenesis (HMOX1) and stress response (HSPA1A, HSPA1B). Expressions of angiogenesis markers (CD31, TGFb1, HMOX1) showed an increase at both mRNA (real-time qPCR) and protein (immuno-staining) levels in irradiated kidneys compared to controls (p<0.01). Experiment 2: Following I/R, the blood urea nitrogen (BUN) and serum creatinine (SCr) levels were significantly lower in the irradiated animals compared to controls: (BUN: 86.2±6.8 vs. 454.5±27.2mg/dl; SCr: 0.1±0.01 vs. 1.7±0.2mg/dl, p<0.01). The renal infiltration by CD11b-positive cells (187±32 vs. 477±20/mm²) and F4-80 macrophages (110±22 vs. 212±25/mm²) was significantly reduced in the irradiated group. The real-time qPCR mRNA levels of the angiogenic markers, TGFb1 and CD31, were significantly increased in the irradiated group compared to controls (p<0,01). The CD31-immunostating (quantified by FiJi) was increased in irradiated mice compared to controls (p<0.01). Experiment 3: One-way analysis of variance followed by Tukey’s test showed that, following I/R, the serum levels of BUN and SCr were lower in irradiated group compared to controls (BUN: 106.1±33.6 vs. 352.2±54.3mg/dl; SCr: 0.3±0.13 vs. 1±0.2mg/dl), and in irradiated group compared to the irradiated-exposed group to Sunitinib (BUN: 106.1±33.6 vs. 408.4±54.9mg/dl; SCr: 0.3±0.12 vs. 1.5±0.3mg/dl; p<0.01). No difference was observed between the irradiated-exposed mice to Sunitinib and the controls. Conclusion Renal irradiation induces the activation of signaling pathways involved in angiogenesis in mice. Renal pre-irradiation leads to RIP, with preserved renal function and attenuated inflammation post I/R. Exposure to the anti-angiogenic drug Sunitinib post-irradiation prevents the irradiation-induced RIP.


Author(s):  
Bo YANG ◽  
zhengwang shi ◽  
Yuan Ma ◽  
Lijuan Wang ◽  
Liyan Cao ◽  
...  

African swine fever (ASF) is one of the most severe infectious diseases of pigs. In this study, a LAMP assay coupled with the CRISPR Cas12a system was established in one tube for the detection of the ASFV p72 gene. The single-strand DNA-fluorophore-quencher (ssDNA-FQ) reporters and CRISPR-derived RNA (crRNAs) were screened and selected for the CRISPR detection system. In combination with LAMP amplification assay, the detection limit for the LAMP-CRISPR assay can reach 7 copies/μl of p72 gene per reaction. Furthermore, this method displays no cross-reactivity with other porcine DNA or RNA viruses. The performance of the LAMP-CRISPR assay was compared with real-time qPCR tests for clinical samples, a good consistency between the LAMP-CRISPR assay and real-time qPCR was observed. In the current study, a LAMP coupled with the CRISPR detection method was developed. The method shed a light on the convenient, portable, low cost, highly sensitive and specific detection of ASFV, demonstrating a great application potential for monitoring on-site ASFV in the field.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kristin R. Duffield ◽  
John Hunt ◽  
Ben M. Sadd ◽  
Scott K. Sakaluk ◽  
Brenda Oppert ◽  
...  

Interest in developing food, feed, and other useful products from farmed insects has gained remarkable momentum in the past decade. Crickets are an especially popular group of farmed insects due to their nutritional quality, ease of rearing, and utility. However, production of crickets as an emerging commodity has been severely impacted by entomopathogenic infections, about which we know little. Here, we identified and characterized an unknown entomopathogen causing mass mortality in a lab-reared population of Gryllodes sigillatus crickets, a species used as an alternative to the popular Acheta domesticus due to its claimed tolerance to prevalent entomopathogenic viruses. Microdissection of sick and healthy crickets coupled with metagenomics-based identification and real-time qPCR viral quantification indicated high levels of cricket iridovirus (CrIV) in a symptomatic population, and evidence of covert CrIV infections in a healthy population. Our study also identified covert infections of Acheta domesticus densovirus (AdDNV) in both populations of G. sigillatus. These results add to the foundational research needed to better understand the pathology of mass-reared insects and ultimately develop the prevention, mitigation, and intervention strategies needed for economical production of insects as a commodity.


Sign in / Sign up

Export Citation Format

Share Document