Generalized evidence for Bergmann’s rule: body size variation in a cosmopolitan owl genus

2020 ◽  
Author(s):  
Andrea Romano ◽  
Robin Séchaud ◽  
Alexandre Roulin
1989 ◽  
Vol 32 (1) ◽  
pp. 88-95 ◽  
Author(s):  
Richard G. Klein ◽  
Katharine Scott

AbstractThe lower carnassial lengths of spotted hyenas (Crocuta crocuta) in 12 late Pleistocene samples from Britain indicate that, on average, local hyenas of the last (Devensian) glaciation were significantly larger than their last-interglaciation (Ipswichian) counterparts. Together with the tendency for spotted hyena carnassial length to increase with latitude in present-day Africa, this suggests that spotted hyena body size is inversely related to temperature, as predicted by Bergmann's rule. The implication is that spotted hyena carnassial length can be used as an independent gauge of Pleistocene temperature variation, though the combined African and British data imply that the relationship between carnassial length and temperature is curvilinear, such that as temperature declines, equal amounts of further decline produce progressively smaller increases in average carnassial length.


2007 ◽  
Vol 97 (1) ◽  
pp. 69-79 ◽  
Author(s):  
C.J. Bidau ◽  
D.A. Martí

AbstractGeographic body size variation was analysed in males and females of 19 populations of the South American grasshopperDichroplus vittatusBruner spanning 20 degrees of latitude and 2700 m of altitude. Using mean and maximum body length of each sex and factors obtained from principal components analyses of six morphometric linear characters it was shown thatD. vittatusfollowed the converse to Bergmann's rule latitudinally but not altitudinally where no significant trends were observed. For males, variability of body size increased with latitude but not with altitude. Both types of trends were significantly correlated with mean annual temperature and minimum annual temperature (positive correlations), and two estimators of seasonality, the coefficients of variation of mean annual temperature (negative) and mean annual precipitation (positive). Some allometric relationships also showed geographic variation. It is suggested that the observed decrease in size with latitude together with the increase in morphological variability is a consequence of a number of factors: the shortening of the growing season southwards; the increasing seasonality and climatic unpredictability; and the fact that the species exhibits protandry which contributes to smaller and more variable size in males and smaller but more constant body size in females.


1994 ◽  
Vol 72 (1) ◽  
pp. 70-77 ◽  
Author(s):  
K. Steudel ◽  
W. P. Porter ◽  
D. Sher

Should an animal extending its range into a cooler climate rely most on pelage or on body size change to minimize its mass-specific metabolic rate? The various examples of animals following Bergmann's rule support the latter. The fact that an increase in size will result in an increase in total metabolic rate (though coupled to the decrease in the mass-specific metabolic rate) suggests that increases in the insulative value of the pelage would be the preferred strategy. We used a thermal simulation model to compare the relative effects of increasing body mass versus increasing pelage insulative properties on the mass-specific metabolic rate. We found that even the fur of summer-adapted small mammals from temperate climates is extremely dense compared with that of larger mammals and is near the point at which increases in density increase, rather than decrease, heat loss as a result of the high conductivity of individual hairs compared with the layer of still air that it encloses. Small mammals also have lower fur depths, presumably as a result of biomechanical constraints. Seasonal changes in pelage observed in small mammals have very modest effects on mass-specific metabolism. Summer-adapted temperate large mammals, however, are less heavily insulated and, consequently, have substantial latitude for increasing insulation as a means of minimizing mass-specific metabolism. Thus, Bergmann's rule should be more relevant to small mammals than to large ones.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maggie M. Hantak ◽  
Bryan S. McLean ◽  
Daijiang Li ◽  
Robert P. Guralnick

AbstractAnthropogenically-driven climate warming is a hypothesized driver of animal body size reductions. Less understood are effects of other human-caused disturbances on body size, such as urbanization. We compiled 140,499 body size records of over 100 North American mammals to test how climate and human population density, a proxy for urbanization, and their interactions with species traits, impact body size. We tested three hypotheses of body size variation across urbanization gradients: urban heat island effects, habitat fragmentation, and resource availability. Our results demonstrate that both urbanization and temperature influence mammalian body size variation, most often leading to larger individuals, thus supporting the resource availability hypothesis. In addition, life history and other ecological factors play a critical role in mediating the effects of climate and urbanization on body size. Larger mammals and species that utilize thermal buffering are more sensitive to warmer temperatures, while flexibility in activity time appears to be advantageous in urbanized areas. This work highlights the value of using digitized, natural history data to track how human disturbance drives morphological variation.


2016 ◽  
Vol 6 (5) ◽  
pp. 1447-1456 ◽  
Author(s):  
Luiz Carlos S. Lopez ◽  
Marcos S. L. Figueiredo ◽  
Maria Paula de Aguiar Fracasso ◽  
Daniel Oliveira Mesquita ◽  
Ulisses Umbelino Anjos ◽  
...  

2018 ◽  
Vol 44 (2) ◽  
pp. 249-254 ◽  
Author(s):  
Susana Pallarés ◽  
Michele Lai ◽  
Pedro Abellán ◽  
Ignacio Ribera ◽  
David Sánchez-Fernández

Paleobiology ◽  
2016 ◽  
Vol 42 (4) ◽  
pp. 643-658
Author(s):  
John D. Orcutt ◽  
Samantha S. B. Hopkins

AbstractPaleecological data allow not only the study of trends along deep-time chronological transects but can also be used to reconstruct ecological gradients through time, which can help identify causal factors that may be strongly correlated in modern ecosystems. We have applied such an analysis to Bergmann’s rule, which posits a causal relationship between temperature and body size in mammals. Bergmann’s rule predicts that latitudinal gradients should exist during any interval of time, with larger taxa toward the poles and smaller taxa toward the equator. It also predicts that the strength of these gradients should vary with time, becoming weaker during warmer periods and stronger during colder conditions. We tested these predictions by reconstructing body-mass trends within canid and equid genera at different intervals of the Oligo-Miocene along the West Coast of North America. To allow for comparisons with modern taxa, body mass was reconstructed along the same transect for modernCanisandOdocoileus. Of the 17 fossil genera analyzed, only two showed the expected positive relationship with latitude, nor was there consistent evidence for a relationship between paleotemperature and body mass. Likewise, the strength of body-size gradients does not change predictably with climate through time. The evidence for clear gradients is ambiguous even in the modern genera analyzed. These results suggest that, counter to Bergmann’s rule, temperature alone is not a primary driver of body size and underscore the importance of regional-scale paleoecological analyses in identifying such drivers.


Sign in / Sign up

Export Citation Format

Share Document