scholarly journals Female‐induced selective modification of sperm protein SUMOylation ‐ potential mechanistic insights into the non‐random fertilization in humans

Author(s):  
Jukka Kekäläinen ◽  
Johannes Hiltunen ◽  
Annalaura Jokiniemi ◽  
Liisa Kuusipalo ◽  
Marjo Heikura ◽  
...  
2021 ◽  
Vol 99 (Supplement_1) ◽  
pp. 113-114
Author(s):  
David J Miller

Abstract Because mating is not always synchronized with ovulation, females from many species store sperm in the female reproductive tract until ovulation and fertilization. This may be done for short periods, a day or two for swine and cattle, or longer periods. Other mammals, such as some species of bats, store sperm for several months. Chickens and turkeys store sperm for 2–4 weeks and queens of some species of insects store sperm for over a decade in specialized structures. How sperm are retained, kept fertile for varying times and released is unclear. We have identified two specific carbohydrate motifs that are abundant in the porcine oviduct that bind and retain sperm in the isthmus. When immobilized, these two glycans lengthen sperm lifespan and suppress the normal increase in intracellular Ca2+ that normally accompanies capacitation. Porcine sperm can be released from oviduct cells and immobilized glycans by progesterone, perhaps of ovarian or cumulus-oocyte complex origin, which activates CatSper, a sperm-specific Ca2+ channel. Progesterone, as well as other compounds that stimulate hyperactivated motility, trigger sperm release, suggesting that hyperactivated motility is sufficient to release porcine sperm from oviduct glycans. We also have found that blocking proteasome-induced sperm protein lysis diminishes the number of sperm released from oviduct glycans. Finally, a transcriptomic approach has identified several groups of genes that are differentially regulated in both bovine and porcine oviducts from estrus animals that are storing sperm compared to oviducts from diestrus animals. This provides clues about how sperm lifespan is extended during storage.


Cell Reports ◽  
2016 ◽  
Vol 16 (4) ◽  
pp. 1055-1066 ◽  
Author(s):  
Xiao Ding ◽  
Aibo Wang ◽  
Xiaopeng Ma ◽  
Maud Demarque ◽  
Wei Jin ◽  
...  

2009 ◽  
Vol 29 (1) ◽  
pp. 99-106 ◽  
Author(s):  
Keiko Kawai-Kowase ◽  
Takayuki Ohshima ◽  
Hiroki Matsui ◽  
Toru Tanaka ◽  
Takehisa Shimizu ◽  
...  

1999 ◽  
Vol 146 (5) ◽  
pp. 1087-1096 ◽  
Author(s):  
Joseph E. Italiano ◽  
Murray Stewart ◽  
Thomas M. Roberts

The major sperm protein (MSP)-based amoeboid motility of Ascaris suum sperm requires coordinated lamellipodial protrusion and cell body retraction. In these cells, protrusion and retraction are tightly coupled to the assembly and disassembly of the cytoskeleton at opposite ends of the lamellipodium. Although polymerization along the leading edge appears to drive protrusion, the behavior of sperm tethered to the substrate showed that an additional force is required to pull the cell body forward. To examine the mechanism of cell body movement, we used pH to uncouple cytoskeletal polymerization and depolymerization. In sperm treated with pH 6.75 buffer, protrusion of the leading edge slowed dramatically while both cytoskeletal disassembly at the base of the lamellipodium and cell body retraction continued. At pH 6.35, the cytoskeleton pulled away from the leading edge and receded through the lamellipodium as its disassembly at the cell body continued. The cytoskeleton disassembled rapidly and completely in cells treated at pH 5.5, but reformed when the cells were washed with physiological buffer. Cytoskeletal reassembly occurred at the lamellipodial margin and caused membrane protrusion, but the cell body did not move until the cytoskeleton was rebuilt and depolymerization resumed. These results indicate that cell body retraction is mediated by tension in the cytoskeleton, correlated with MSP depolymerization at the base of the lamellipodium.


1995 ◽  
Vol 41 (2) ◽  
pp. 249-256 ◽  
Author(s):  
Sylvie Bégin ◽  
Bruno Bérubé ◽  
Franck Boué ◽  
Robert Sullivan
Keyword(s):  

1994 ◽  
Vol 107 (10) ◽  
pp. 2941-2949
Author(s):  
K.L. King ◽  
M. Stewart ◽  
T.M. Roberts

Sperm of the nematode, Ascaris suum, are amoeboid cells that do not require actin or myosin to crawl over solid substrata. In these cells, the role usually played by actin has been taken over by major sperm protein (MSP), which assembles into filaments that pack the sperm pseudopod. These MSP filaments are organized into multi-filament arrays called fiber complexes that flow centripetally from the leading edge of the pseudopod to the cell body in a pattern that is intimately associated with motility. We have characterized structurally a hierarchy of helical assemblies formed by MSP. The basic unit of the MSP cytoskeleton is a filament formed by two subfilaments coiled around one another along right-handed helical tracks. In vitro, higher-order assemblies (macrofibers) are formed by MSP filaments that coil around one another in a left-handed helical sense. The multi-filament assemblies formed by MSP in vitro are strikingly similar to the fiber complexes that characterize the sperm cytoskeleton. Thus, self-association is an intrinsic property of MSP filaments that distinguishes these fibers from actin filaments. The results obtained with MSP help clarify the roles of different aspects of the actin cytoskeleton in the generation of locomotion and, in particular, emphasize the contributions made by vectorial assembly and filament bundling.


2007 ◽  
Vol 74 ◽  
pp. 23-36 ◽  
Author(s):  
Christopher M. Saunders ◽  
Karl Swann ◽  
F. Anthony Lai

A dramatic rise in intracellular calcium plays a vital role at the moment of fertilization, eliciting the resumption of meiosis and the initiation of embryo development. In mammals, the rise takes the form of oscillations in calcium concentration within the egg, driven by an elevation in inositol trisphosphate. The causative agent of these oscillations is proposed to be a recently described phosphoinositide-specific phospholipase C, PLCζ, a soluble sperm protein that is delivered into the egg following membrane fusion. In the present review, we examine some of the distinctive structural and functional characteristics of this crucial enzyme that sets it apart from the other known forms of mammalian PLC.


2016 ◽  
Vol 85 (3) ◽  
pp. 540-554 ◽  
Author(s):  
P. Rodríguez-Villamil ◽  
V. Hoyos-Marulanda ◽  
J.A.M. Martins ◽  
A.N. Oliveira ◽  
L.H. Aguiar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document