Surface treatments on CAD / CAM glass–ceramics: Influence on roughness, topography, and bond strength

Author(s):  
Veber Luiz Bomfim Azevedo ◽  
Eduardo Fernandes Castro ◽  
Jean‐Jacques Bonvent ◽  
Oswaldo Scopin Andrade ◽  
Fábio Dupart Nascimento ◽  
...  
2019 ◽  
Vol 65 (2) ◽  
pp. 1853-1864
Author(s):  
Shereen Salem ◽  
Ahmed Ziada ◽  
Khaled Elbanna

Author(s):  
PP Garcia ◽  
RG da Costa ◽  
AV Garcia ◽  
CC Gonzaga ◽  
LF da Cunha ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Mustafa Mehmet Özarslan ◽  
Özlem Üstün ◽  
Ulviye Sebnem Buyukkaplan ◽  
Çağatay Barutcigil ◽  
Nurullah Türker ◽  
...  

Adult orthodontics may confront problems related to the bonding performance of orthodontic brackets to new generation restorative materials used for crown or laminate restorations. The aim of the present study was to investigate the shear bond strength of ceramic brackets to two new generation CAD/CAM interpenetrating network composite and nanoceramic composite after different surface treatments. Er,Cr:YSGG Laser, hydrofluoric acid (9%), sandblasting (50 μm Al2O3), and silane were applied to the surfaces of 120 CAD/CAM specimens with 2 mm thickness and then ceramic brackets were bonded to the treated surfaces of the specimens. Bond strength was evaluated using the shear bond strength test. According to the results, CAD/CAM block types and surface treatment methods have significant effects on shear bond strength. The lowest bond strength values were found in the specimens treated with silane (3.35 ± 2.09 MPa) and highest values were found in the specimens treated with sandblast (8.92 ± 2.77 MPa). Sandblasting and hydrofluoric acid surface treatment led to the most durable bonds for the two types of CAD/CAM blocks in the present study. In conclusion, different surface treatments affect the shear bond strength of ceramic brackets to CAD/CAM interpenetrating network composite and nanoceramic composite. Among the evaluated treatments, sandblasting and hydrofluoric acid application resulted in sufficient bonding strength to ceramic brackets for both of the CAD/CAM materials.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 381 ◽  
Author(s):  
Roxana-Diana Vasiliu ◽  
Sorin Daniel Porojan ◽  
Mihaela Ionela Bîrdeanu ◽  
Liliana Porojan

Dental ceramic restorations are widely spread nowadays due to their aesthetics and biocompatibility. In time, the colour and structure of these ceramic materials can be altered by aging processes. How does artificial aging affect the optical and surface roughness of ceramics? This study aims to assess the effect of thermocycling, surface treatments and microstructure upon translucency, opalescence and surface roughness on CAD-CAM and heat-pressed glass-ceramic. Forty-eight samples (1.5 mm thickness) were fabricated from six types of A2 MT ceramic: heat-pressed and milled glass-ceramic (feldspathic, lithium disilicate and zirconia reinforced lithium silicate). The samples were obtained respecting the manufacturer’s instructions. The resulted surfaces (n = 96) were half glazed and half polished. The samples were subjected to thermocycling (10,000 cycles) and roughness values (Ra and Rz), colour coordinates (L*, a*, b*) and microstructural analyses were assessed before and after thermocycling. Translucency (TP) and opalescence (OP) were calculated. Values were statistically analysed using ANOVA test (one way). TP and OP values were significantly different between heat-pressed and milled ceramics before and also after thermocycling (p < 0.001). Surface treatments (glazing and polishing) had a significant effect on TP and OP and surface roughness (p < 0.05). The heat-pressed and milled zirconia reinforced lithium silicate glass-ceramic experienced a loss in TP and OP. Ra and Rz increased for the glazed samples, TP and OP decreased for all the samples after thermocycling. Microstructural analyse revealed that glazed surfaces were more affected by the thermocycling and especially for the zirconia reinforced lithium silicate ceramic. Optical properties and surface roughness of the chosen ceramic materials were affected by thermocycling, surface treatments and microstructural differences. The least affected of the ceramics was the lithium disilicate ceramic heat-pressed polished and glazed.


2019 ◽  
Vol 10 (2) ◽  
pp. 120-127
Author(s):  
Sevki Cinar ◽  
Bike Altan ◽  
Gokhan Akgungor

Objective: To compare the bond strength of monolithic CAD-CAM materials to resin cement using different surface treatment methods. Materials and Methods: Lithium disilicate glass ceramic (IPS e-max CAD), zirconia-reinforced lithium silicate ceramic (Vita Suprinity), resin nanoceramic (Lava Ultimate), and hybrid ceramic (Vita Enamic) were used. Five groups of CAD-CAM blocks were treated as follows: control (C), HF etching (HF), HF etching + silanization (HF + S), sandblasting (SB), and sandblasting + silanization (SB + S). After surface treatments, SEM analyses were conducted. Specimens were cemented with self-adhesive resin cement (Theracem) and stored in distilled water at 37°C for 24 h. Shear bond strength (SBS) was measured, and failure types were categorized. Results were analyzed using two-way ANOVA and the post-hoc Tukey test. Results: Statistical analysis revealed significant differences between SBS values obtained for different surface treatments and CAD-CAM block types ( P < .001). Among the CAD-CAM materials, the highest SBS was reported in the HF + S group for Vita Enamic. Although IPS e.max CAD, Vita Suprinity, and Vita Enamic showed higher bond strength when treated with HF + S, Lava Ultimate has the highest bond strength value when treated with SB + S. Conclusions: The bond strength of CAD-CAM materials was influenced by surface treatment. Additionally, silanization significantly improved the bond strength of all materials except Lava Ultimate.


Sign in / Sign up

Export Citation Format

Share Document