scholarly journals Assessment the Bond Strength of Ceramic Brackets to CAD/CAM Nanoceramic Composite and Interpenetrating Network Composite after Different Surface Treatments

2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Mustafa Mehmet Özarslan ◽  
Özlem Üstün ◽  
Ulviye Sebnem Buyukkaplan ◽  
Çağatay Barutcigil ◽  
Nurullah Türker ◽  
...  

Adult orthodontics may confront problems related to the bonding performance of orthodontic brackets to new generation restorative materials used for crown or laminate restorations. The aim of the present study was to investigate the shear bond strength of ceramic brackets to two new generation CAD/CAM interpenetrating network composite and nanoceramic composite after different surface treatments. Er,Cr:YSGG Laser, hydrofluoric acid (9%), sandblasting (50 μm Al2O3), and silane were applied to the surfaces of 120 CAD/CAM specimens with 2 mm thickness and then ceramic brackets were bonded to the treated surfaces of the specimens. Bond strength was evaluated using the shear bond strength test. According to the results, CAD/CAM block types and surface treatment methods have significant effects on shear bond strength. The lowest bond strength values were found in the specimens treated with silane (3.35 ± 2.09 MPa) and highest values were found in the specimens treated with sandblast (8.92 ± 2.77 MPa). Sandblasting and hydrofluoric acid surface treatment led to the most durable bonds for the two types of CAD/CAM blocks in the present study. In conclusion, different surface treatments affect the shear bond strength of ceramic brackets to CAD/CAM interpenetrating network composite and nanoceramic composite. Among the evaluated treatments, sandblasting and hydrofluoric acid application resulted in sufficient bonding strength to ceramic brackets for both of the CAD/CAM materials.

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Heloísa A. B. Guimarães ◽  
Paula C. Cardoso ◽  
Rafael A. Decurcio ◽  
Lúcio J. E. Monteiro ◽  
Letícia N. de Almeida ◽  
...  

The aim of this study was to evaluate the shear bond strength of resin cement and lithium disilicate ceramic after various surface treatments of the ceramic. Sixty blocks of ceramic (IPS e.max Press, Ivoclar Vivadent) were obtained. After cleaning, they were placed in polyvinyl chloride tubes with acrylic resin. The blocks were divided into six groups (n=10) depending on surface treatment: H/S/A - 10% Hydrofluoric Acid + Silane + Adhesive, H/S -10% Hydrofluoric Acid + Silane, H/S/UA - 10% Hydrofluoric Acid + Silane + Universal Adhesive, H/UA- 10% Hydrofluoric Acid + Universal Adhesive, MBEP/A - Monobond Etch & Prime + Adhesive, and MBEP - Monobond Etch & Prime. The light-cured resin cement (Variolink Esthetic LC, Ivoclar Vivadent) was inserted in a mold placed over the treated area of the ceramics and photocured with an LED for 20 s to produce cylinders (3 mm x 3 mm). The samples were subjected to a shear bond strength test in a universal test machine (Instron 5965) by 0.5 mm/min. ANOVA and Tukey tests showed a statistically significant difference between groups (p<0.05). The results of the shear strength test were H/S/A (9.61±2.50)A, H/S (10.22±3.28)A, H/S/UA (7.39±2.02)ABC, H/UA (4.28±1.32)C, MBEP/A (9.01±1.97)AB, and MBEP (6.18±2.75)BC. The H/S group showed cohesive failures, and the H/UA group was the only one that presented adhesive failures. The conventional treatment with hydrofluoric acid and silane showed the best bond strength. The use of a new ceramic primer associated with adhesive bonding obtained similar results to conventional surface treatment, being a satisfactory alternative to replace the use of hydrofluoric acid.


2019 ◽  
Vol 18 ◽  
pp. e191581
Author(s):  
Fawaz Alqahtani ◽  
Mohammed Alkhurays

Aim: The study aimed to evaluate and compare the effect of different surface treatment and thermocycling on the shear bond strength (SBS) of different dual-/light-cure cements bonding porcelain laminate veneers (PLV). Methods: One hundred and twenty A2 shade lithium disilicate discs were divided into three groups based on the resin cement used and on the pretreatment received and then divided into two subgroups: thermocycling and control. The surface treatment were either micro-etched with aluminium trioxide and 10% hydrofluoric acid or etched with 10% hydrofluoric acid only before cementation. Three dual-cure (Variolink Esthetic (I), RelyX Ultimate (II), and RelyX Unicem (III)) and three light-cure (Variolink Veneer (IV), Variolink Esthetic (V), RelyX Veneer (VI)) resin cements were used for cementation. The SBS of the samples was evaluated and analysed using three -way ANOVA with statistical significant set at α=0.05. Results: For all resin cements tested with different surface treatments, there was a statistically significant difference within resin cements per surface treatment (p<0.05). The shear bond strength in the micro-etch group was significant higher than the acid-etch group (p<0.05) There was statistically significant interaction observed between the surface treatment and thermocycling (p<0.05) as well as the cement and thermocycling(p<0.05). It was observed that the reduction in shear bond strength after thermocycling was more pronounced in the acid etch subgroup as compared to the microetch subgroup. However, the interaction between the three factors: surface treatments, thermocycling and resin cements did not demonstrate statistically significant differences between and within groups (p=0.087). Conclusions: Within the limitations of the present study, it acan be concluded that Dual cure resin cements showed a higher Shear bond strength as compared to light cure resin cements. Thermal cycling significantly decreased the shear bond strength for both ceramic surface treatments. After thermocycling, the specimens with 10% HF surface treatment showed lower shear bond strength values when compared to those treated by sandblasting with Al2O3 particles.


10.19082/5487 ◽  
2017 ◽  
Vol 9 (10) ◽  
pp. 5487-5493 ◽  
Author(s):  
Faraneh Mokhtarpour ◽  
Homayoon Alaghehmand ◽  
Soraya Khafri

2018 ◽  
Vol 41 (3) ◽  
pp. 160-167 ◽  
Author(s):  
Pinar Cevik ◽  
Oguz Eraslan ◽  
Kursat Eser ◽  
Suleyman Tekeli

Purpose: The aim of this study was to evaluate the effect of six different surface conditioning methods on the shear bond strength of ceramic brackets bonded to feldspathic porcelain. Materials and methods: A total of 60 feldspathic porcelain disks were fabricated and divided into six subgroups including 10 specimens in each. Specimens were first treated one of the following surface conditioning methods, namely, 37% phosphoric acid (G-H3PO4), 9.4% hydrofluoric acid (G-HF), grinding with diamond burs (G-Grinding), Nd:YAG laser (G-Nd:YAG), Airborne-particle abrasion (G-Abrasion). Specimens were also coated with silane without surface treatment for comparison (G-Untreated). A total of 60 ceramic brackets were bonded to porcelain surfaces with a composite resin and then subjected to thermocycling 2500× between 5°C and 55°C. The shear bond strength test was carried out using a universal testing device at a crosshead speed of 0.5 mm/min. Failure types were classified according to the adhesive remnant index. Analysis of variance and Tukey tests were used for statistical analysis (α = 0.05). Microstructure of untreated and surface-treated specimens was investigated by scanning electron microscopy. Results: Using G-Abrasion specimens resulted in the highest shear bond strength value of 8.58 MPa for feldspathic porcelain. However, the other specimens showed lower values: G-Grinding (6.51 MPa), G-Nd:YAG laser (3.37 MPa), G-HF (2.71 MPa), G-H3PO4 (1.17 MPa), and G-Untreated (0.93 MPa). Conclusion: Airborne-particle abrasion and grinding can be used as surface treatment techniques on the porcelain surface for a durable bond strength. Hydrofluoric acid and phosphoric acid etching methods were not convenient as surface treatment methods for the feldspathic porcelain.


2021 ◽  
Vol 9 (1) ◽  
pp. 01-09
Author(s):  
Ibrahim M. Hamouda ◽  
Enas M. Elddainony ◽  
Mosaad A. ELgabrouny ◽  
Fahim M. El-Shamy

Background: Fracture of ceramic-metal restorations is a major problem facing the dentists and the patients. There are several bonding systems currently available in the market to repair the fractured ceramic-metal restorations inside or outside the oral cavity. Purpose: The purpose of this study was to test the efficiency of repairing of metal-ceramic restorations using different bonding systems with different surface treatments. This efficiency was tested through the conduction of shear bond strength of the composite bonded to the porcelain and to nickel-chromium alloy using three different bonding agents (Excite, AdheSE, and Prompt L-Pop) with four different surface treatments (sandblasting and enchant, diamond stone roughening, sandblasting and hydrofluoric acid etching, or without surface treatment). Materials and Methods: A total of 120 specimens were prepared, 60 specimens from porcelain and 60 specimens from nickel-chromium alloy. Each group was divided into three equal subgroups, 20 specimens each, corresponding to the 3 bonding agents used. Each subgroup was further subdivided into four subgroups, 5 specimens each, corresponding to the surface treatment procedures. Bonding agents applied over all specimens and cured, followed by application of a micro-hybrid light-cured composite resin (Tetric Ceram). Thermal cycling was done for all specimens between 5°C and 55°C for 1000 cycles with a 10-second dwell time. Shear bond strength test was conducted using a universal testing machine ata cross-head speed of 0.5 mm/min. Results: The highest shear bond strength value recorded for the porcelain specimens bonded with Excite bonding agent with surface treatment sandblasting and hydrofluoric acid etching. In metal groups, the AdheSE bonding agent showed the highest shear bond strength value with the same surface treatment of the porcelain specimens. It was observed that sandblasting followed by hydrofluoric acid etching produced the most effective treatment method for porcelain and metal surfaces. Conclusion: The most effective technique for repairing metal ceramic restoration was sandblasting with hydrofluoric acid etching as surface treatment together with AdheSE or Excite bonding agents.


2020 ◽  
Vol 23 (3) ◽  
Author(s):  
Shahd Taha Mandil ◽  
Hesham Katamish ◽  
Tarek Salah

Objective: The aim of this study is to assess the effect of Er,Cr:YSGG laser on the shear bond strength (SBS) and surface topography of two CAD/CAM ceramic materials bonded with self-adhesive resin cement. Material and methods: sixty ceramic CAD/CAM discs were obtained, 30 lithium disilicate (IPS Emax) and 30 hybrid resin ceramic (Vita Enamic). The Slices were allocated into six groups (n=10) according to ceramic material and surface treatment; Group (LD-C): IPS Emax treated with 9% hydrofluoric acid(HF), Groups (LD-P1) and (LD-P2): IPS Emax treated with Er,Cr:YSGG laser with parameters 1.5 W and 2.5 W, respectively. Group (RC-C): Vita Enamic treated with 9% hydrofluoric acid (HF), Groups (RC-P1) and (RC-P2): Vita Enamic treated with Er,Cr:YSGG laser with parameters 1.5 W and 2.5 W, respectively. All samples were cemented with self-adhesive resin cement and thermocycled for 5000 cycles. The SBS was measured using a universal testing machine and the mean values (MPa) were analyzed using Two-way (ANOVA) (P ≤ 0.05) and Bonferroni’s post-hoc test. Results: RC-C (16.55) showed highest SBS followed by LD-C (13.79), which revealed no statistically significant difference with RC-P1 (12.33) and RC-P2 (11.2). The lowest SBS values were found with LD-P1 (2.7) and LD-P2 (2.1). SEM analysis revealed Vita Enamic to have the highest surface roughness. Fracture pattern analysis showed adhesive failure with IPS Emax groups and mixed failure with Vita Enamic groups. Conclusion: Er,Cr:YSGG laser irradiation with the parameters used did not increase SBS of IPS Emax and Vita Enamic with composite resin compared to HF acid etching.KeywordsEr,Cr:YSGG laser; Shear bond strength; Surface treatment; Ceramic materials.


2017 ◽  
Vol 88 (2) ◽  
pp. 221-226 ◽  
Author(s):  
S. Kutalmış Buyuk ◽  
Ahmet Serkan Kucukekenci

ABSTRACT Objective: To investigate the shear bond strength (SBS) of orthodontic metal brackets applied to different types of ceramic surfaces treated with different etching procedures and bonding agents. Materials and Methods: Monolithic CAD/CAM ceramic specimens (N = 120; n = 40 each group) of feldspathic ceramic Vita Mark II, resin nanoceramic Lava Ultimate, and hybrid ceramic Vita Enamic were fabricated (14 × 12 × 3 mm). Ceramic specimens were separated into four subgroups (n = 10) according to type of surface treatment and bonding onto the ceramic surface. Within each group, four subgroups were prepared by phosphoric acid, hydrofluoric acid, Transbond XT primer, and Clearfill Ceramic primer. Mandibular central incisor metal brackets were bonded with light-cure composite. The SBS data were analyzed using three-way analysis of variance (ANOVA) and Tukey HSD tests. Results: The highest SBS was found in the Vita Enamic group, which is a hybrid ceramic, etched with hydrofluoric acid and applied Transbond XT Adhesive primer (7.28 ± 2.49 MPa). The lowest SBS was found in the Lava Ultimate group, which is a resin nano-ceramic etched with hydrofluoric acid and applied Clearfill ceramic primer (2.20 ± 1.21 MPa). Conclusions: CAD/CAM material types and bonding procedures affected bond strength (P &lt; .05), but the etching procedure did not (P &gt; .05). The use of Transbond XT as a primer bonding agent resulted in higher SBS.


Sign in / Sign up

Export Citation Format

Share Document