Nutritional composition, functional and pasting properties of wheat, mushroom, and high quality cassava composite flour

2016 ◽  
Vol 41 (5) ◽  
pp. e13150 ◽  
Author(s):  
Oluwakemi F. Ekunseitan ◽  
Adewale O. Obadina ◽  
Olajide P. Sobukola ◽  
Adebukunola M. Omemu ◽  
Mojisola O. Adegunwa ◽  
...  
2019 ◽  
Vol 11 (1) ◽  
pp. 21-29 ◽  
Author(s):  
Folasade Maria Makinde ◽  
Ayobami Opeyemi Eyitayo

The feasibility of partially replacing wheat flour with coconut flour in baked products was investigated. Matured coconut (Cocos nucifera) endocarp was grated for the extraction of milk, dried, milled,and pulverized. Five blends of composite flour were prepared by combining wheat flour with 10% to 50% of partially defatted coconut flour,respectively. The 100% wheat flour served as control. The samples were analysed for proximate, mineral, functional,and pasting properties using standard procedures. The proximate analysis indicated 5.52 % moisture, 23.6% protein, 11.14% fibre, 5.4% fat, 5.21% ash,and 49.1% carbohydrate for coconut flour. The ranges of the proximate composition forthe flour blends were:moisture (4.79-5.55%), protein (14.9 -19.1%), fibre (0.44 -5.12%), fat (2.9 -5.3%), ash (0.68-2.13%), carbohydrate (62.7-76.2%),and energy (315.26-335.28 kCal). The values for moisture, protein, fat, fibre,and ash increased with the increasing levels of coconut substitution,except for carbohydrate and energy contents. There were significant differences (p≤0.05) in calcium, magnesium, potassium, phosphorus, iron,and zinc concentrations of the samples. The range of values obtained for these parameters was1.32-2.59 mg/kg, 2.60-3.83 mg/kg, 12.10-16.89 mg/kg, 12.40-18.50 mg/kg,0.50-1.22 mg/kg and 0.30-1.23 mg/kg, respectively. The ranges of functional properties were:loosed bulk density (0.28-0.49 g/mL),packed bulk density (0.44-0.75 g/mL), pH (5.77-6.57), swelling capacity (3.89-6.56%), water absorption capacity (0.89-3.97 ml/g),oil absorption capacity (1.26-3.20 ml/g),and gelation (12.0-18.0%). The pasting characteristics showed significant differences betweenthe100% wheat flour and coconut substituted samples. The results revealed modifications in nutritional, functional,and pasting properties in blends containing fractions of partially defatted coconut flour,which suggeststheir application in diverse food products.


Author(s):  
Olawale Paul Olatidoye ◽  
Abdulrazak Shittu ◽  
Sunday Samuel Sobowale ◽  
Wasiu Ajani Olayemi ◽  
Isi Favour Adeluka

High quality cassava flour (HQCF) is now widely used production of baked foods in Nigeria but bread quality is impaired when it is used in the bread formulation. In order to overcome this problem, six breads samples were produced from wheat/HQCF/hydrocolloid:T0100%wheat flour(control);T190:9:CMC;T290:9:GG;T3,80:18:CMC;T4,80:18:GG;T570:27:CMC;T670:27:GG. The flour blends were analyzed for functional, colour and pasting properties while breads characteristics and sensory evaluation were performed in order to assess effect of hydrocolloids on bread. The results showed composite flour with hydrocolloids had the highest bulk density (0.704g/ml), water absorption capacity (2.98m/g), least gelation concentration (4.4g/g), oil absorption capacity (0.71m/g), while control had the highest swelling capacity (1.68g/g). Significant differences at p<0.05 were found on the pasting properties of addition of hydrocolloids with lower pasting temperature (71oC) and time (6.08 min). Bread quality attributes such as loaf volume, specific loaf volume, oven spring, crust colour, crumb colour and firmness of the fresh breads significantly improved with the addition of hydrocolloids compared with bread produced without improvers. The results show that high quality cassava flour could be incorporated up to 18% with carboxymethylcellulose at 2% level without affecting its overall acceptability and thereby enhance the potential for using locally produced flours in bread baking. Sensory score of bread from the addition of hydrocolloids were all acceptable by the panelist. The addition of hydrocolloids could be used as an effective means of improving the quality of gluten free bread.


2016 ◽  
Vol 41 (5) ◽  
pp. e13125 ◽  
Author(s):  
A.A. Adebowale ◽  
S.T. Kareem ◽  
O.P. Sobukola ◽  
M.A. Adebisi ◽  
A.O. Obadina ◽  
...  
Keyword(s):  

2021 ◽  
pp. 65-73
Author(s):  
Owuno Friday ◽  
Achinewu Simeon Chituru

Chin-Chin, a traditional Nigerian snack was prepared utilizing wheat-fermented maize residue composite flour at 0 – 30% replacement levels. Effects of this addition on the functional and pasting properties of the flour composite was evaluated. The snack produced was also evaluated for its sensory attributes, proximate composition and invitro-protein digestibility (IVPD). Functional properties results showed an increase in water absorption capacity (WAC), a decrease in oil absorption capacity (OAC), decrease in Bulk Density (BD), swelling power and solubility index with residue addition. Pasting property results showed a drop in the value of peak, trough, breakdown and final viscosity with substitution while set back viscosity increased.Peak temperature decreased, but values for pasting temperature showed no significant difference between the control and the blends. Results for sensory evaluation showed equal preference for overall acceptability. Proximate composition results showed residue addition led to an increase in crude fibre and protein content with a drop in the carbohydrate value. Residue addition did not increase protein digestibility. Addition of fermented maize residue in chin-chin production can be another way of utilizing the fibre rich by-product of the production of fermented maize starch.


Author(s):  
Emmanuel Anyachukwu Irondi ◽  
◽  
Wasiu Awoyale ◽  
Ganiyu Oboh ◽  
Aline Augusti Boligon ◽  
...  

2019 ◽  
Vol 12 (1) ◽  
pp. 18-27
Author(s):  
S.A. Rasaq ◽  
T.A. Shittu ◽  
G.J. Fadimu ◽  
A.B. Abass ◽  
O. Omoniyi

Author(s):  
Wasiu Awoyale ◽  
Adebayo B. Abass ◽  
Paul Amaza ◽  
Olayemi Oluwasoga ◽  
Gregory Nwaoliwe

With proper processing and utilization, biofortified cassava may contribute to the nutritional status of the consumers, thus, the need for this study. High-quality cassava flour from white- (TME 419) and biofortified (TMS 01/1368) cassava varieties were produced at a commercial processing factory, after which the flour is composite with wheat flour to produce bread. The nutritional composition, physical properties and sensory quality of the composite bread were analyzed using standard methods. Results showed that composite bread from 20% biofortified cassava flour (20-YCF) had a higher value of total β-carotene (0.74 μg/g), moisture (37.83%) and ash (2.29%) contents. The fat (3.72%) and protein (12.83%) contents were higher in 20% white cassava flour (20-WCF) composite bread. The 20-YCF composite bread had the highest loaf volume (3286.2 cm3), elasticity (6.32), chewiness (40.51 N) and gumminess (6.41), 20-WCF composite bread had higher specific volume (3.59 cm3/g) and hardness (176.50 N). The 100% wheat bread had higher cohesiveness (0.10) and loaf weight (932.35 g). A significant negative correlation (r = - 0.98, p≤0.05) exist between bread hardness and protein content. The composite bread compared favourably with the 100% wheat bread in terms of weight and aroma, but, the 100% wheat bread was more acceptable.


Sign in / Sign up

Export Citation Format

Share Document