scholarly journals Influence of hydrocolloids addition (carboxymethylcellulose and guargum) on some quality attributes of wheat and high quality cassava flour and its bread making potentials

Author(s):  
Olawale Paul Olatidoye ◽  
Abdulrazak Shittu ◽  
Sunday Samuel Sobowale ◽  
Wasiu Ajani Olayemi ◽  
Isi Favour Adeluka

High quality cassava flour (HQCF) is now widely used production of baked foods in Nigeria but bread quality is impaired when it is used in the bread formulation. In order to overcome this problem, six breads samples were produced from wheat/HQCF/hydrocolloid:T0100%wheat flour(control);T190:9:CMC;T290:9:GG;T3,80:18:CMC;T4,80:18:GG;T570:27:CMC;T670:27:GG. The flour blends were analyzed for functional, colour and pasting properties while breads characteristics and sensory evaluation were performed in order to assess effect of hydrocolloids on bread. The results showed composite flour with hydrocolloids had the highest bulk density (0.704g/ml), water absorption capacity (2.98m/g), least gelation concentration (4.4g/g), oil absorption capacity (0.71m/g), while control had the highest swelling capacity (1.68g/g). Significant differences at p<0.05 were found on the pasting properties of addition of hydrocolloids with lower pasting temperature (71oC) and time (6.08 min). Bread quality attributes such as loaf volume, specific loaf volume, oven spring, crust colour, crumb colour and firmness of the fresh breads significantly improved with the addition of hydrocolloids compared with bread produced without improvers. The results show that high quality cassava flour could be incorporated up to 18% with carboxymethylcellulose at 2% level without affecting its overall acceptability and thereby enhance the potential for using locally produced flours in bread baking. Sensory score of bread from the addition of hydrocolloids were all acceptable by the panelist. The addition of hydrocolloids could be used as an effective means of improving the quality of gluten free bread.

2021 ◽  
Vol 13 (1) ◽  
pp. 57-68
Author(s):  
Muluken K. Kassa ◽  
Shimelis A. Emire

This research was conducted to investigate the pasting, rheological and functional properties, and gluten-free biscuit making potential of a composite flour prepared from grains of amaranthus, sorghum and finger millet. The formulation for the composite flour was obtained from D-optimal mixture design ratio using Design-Expert. The rheological and pasting properties of the composite flours were determined, while the proximate composition, physical dimensions, mineral concentration and sensory quality attributes of the biscuits were assessed. The results showed that there were significant (p<0.05) differences in the pasting profile of the control and amaranthus based composites flour except for pasting temperature. Water absorption capacity and water soliblity index increased as the blending ratio of amaranthus flour increased, while oil absorption capacity decreased. The proximate composition evaluation 13.75, 2.04, 1.77 and 31.75% were found to be the highest values of the biscuit samples in terms of protein, crude fiber, ash and crude fat, respectively. Mineral analaysis was carried out and there was a significant (p<0.05) difference in Fe, Ca, Zn and P content among the biscuit samples made from the composite flour blends. Similarly, the sensory evaluation indicated that there was a significant (p<0.05) differences in apperance, colour, texture, flavour and overall acceptability among the composite biscuit samples. However, the difference was insignificant (p<0.05) in crispiness of biscuit samples. In a nut shell this research revealed that a nutritionally dense gluten-free biscuits can be formulated without affecting the quality attributes of the biscuit. Thus, the composite flours can be used for the preparation of gluten free food products in africa, where the crops have not been effectively utilized in food processing industries.


2021 ◽  
pp. 65-73
Author(s):  
Owuno Friday ◽  
Achinewu Simeon Chituru

Chin-Chin, a traditional Nigerian snack was prepared utilizing wheat-fermented maize residue composite flour at 0 – 30% replacement levels. Effects of this addition on the functional and pasting properties of the flour composite was evaluated. The snack produced was also evaluated for its sensory attributes, proximate composition and invitro-protein digestibility (IVPD). Functional properties results showed an increase in water absorption capacity (WAC), a decrease in oil absorption capacity (OAC), decrease in Bulk Density (BD), swelling power and solubility index with residue addition. Pasting property results showed a drop in the value of peak, trough, breakdown and final viscosity with substitution while set back viscosity increased.Peak temperature decreased, but values for pasting temperature showed no significant difference between the control and the blends. Results for sensory evaluation showed equal preference for overall acceptability. Proximate composition results showed residue addition led to an increase in crude fibre and protein content with a drop in the carbohydrate value. Residue addition did not increase protein digestibility. Addition of fermented maize residue in chin-chin production can be another way of utilizing the fibre rich by-product of the production of fermented maize starch.


Author(s):  
Wasiu Awoyale ◽  
Adebayo B. Abass ◽  
Paul Amaza ◽  
Olayemi Oluwasoga ◽  
Gregory Nwaoliwe

With proper processing and utilization, biofortified cassava may contribute to the nutritional status of the consumers, thus, the need for this study. High-quality cassava flour from white- (TME 419) and biofortified (TMS 01/1368) cassava varieties were produced at a commercial processing factory, after which the flour is composite with wheat flour to produce bread. The nutritional composition, physical properties and sensory quality of the composite bread were analyzed using standard methods. Results showed that composite bread from 20% biofortified cassava flour (20-YCF) had a higher value of total β-carotene (0.74 μg/g), moisture (37.83%) and ash (2.29%) contents. The fat (3.72%) and protein (12.83%) contents were higher in 20% white cassava flour (20-WCF) composite bread. The 20-YCF composite bread had the highest loaf volume (3286.2 cm3), elasticity (6.32), chewiness (40.51 N) and gumminess (6.41), 20-WCF composite bread had higher specific volume (3.59 cm3/g) and hardness (176.50 N). The 100% wheat bread had higher cohesiveness (0.10) and loaf weight (932.35 g). A significant negative correlation (r = - 0.98, p≤0.05) exist between bread hardness and protein content. The composite bread compared favourably with the 100% wheat bread in terms of weight and aroma, but, the 100% wheat bread was more acceptable.


2018 ◽  
Vol 8 (9) ◽  
pp. 438
Author(s):  
Wasiu Awoyale ◽  
Adebayo Abass ◽  
Bussie Maziya-Dixon

Background: As one of the most widely consumed foods, bread is one of the most important agricultural products. Bread made from high-quality cassava flour is consumed in some parts of Sub-Sahara Africa (SSA). The bread has no pro-vitamin S carotenoids (pVAC) due to the use of artificial colorants. Consequently, there is a need for the use of pVAC rich foods for bread production. Foods that are rich with pro-vitamin A carotenoids can be converted into retinol in the human body and whose bioconversion contributes to the reduction of vitamin A deficiency diseases (VAD). VAD has caused annual loss of life in SSA, especially in Nigeria. The yellow-fleshed cassava root might contribute to the reduction of this disease. The high quality yellow cassava flour (YHQCF) produced from yellow-fleshed cassava root may contribute to the pVAC composition of bread. As a result, there is a need for the evaluation of the retention of pVAC in composite bread baked with high quality cassava flour from yellow-fleshed cassava roots. Methods: The YHQCF was produced from TMS01/1368 cassava variety. The bread loaves consisted of 20% and 100% YHQCF and were produced by mixing the sugar, margarine, yeast, improver, and salt with the composite flour and YHQCF respectively, after which water was added and mixed to get the homogenous dough. The dough was proofed for 2.5 hours, kneaded, cut into shape, placed in a lubricated baking pan, and baked at 200oC for 30 min. Analyses of the pro-vitamin A (cis and trans-β carotene) and dry matter content were carried out on all the samples, including samples from the YHQCF production steps using standard methods. The samples from the YHQCF production steps were chosen and analyzed for pVAC in order to check the levels of degradation of the pVAC from the raw cassava root to using the root for flour production and the quantity of pVAC retained when 100% of the YHQCF is used for bread production compared to 20% composite. The β-carotene nutrient retention of the bread was also calculated.Results: The results demonstrated how the total pVAC content of the raw yellow-fleshed cassava root was 16.83 µg/g dry basis with 29% dry matter (DM) content. Subsequent processing by peeling, washing, grating, and dewatering into granules (56% DM) caused 48% reduction in the pVAC content which was reduced to 40% after drying and milling the dried grits into YHQCF (97% DM). Preparation of recipe for bread demonstrated how the 20% composite flour dough (61% DM) contained 0.29 µg/g db pVAC representing 1.72% retention, which was later reduced to 0.25 µg/g db pVAC or 1.49% retention after baking (62%DM). On the other hand, bread loaves baked from 100% YHQCF (67% DM) retained 0.74 µg/g db pVAC representing 4.40% of the 16.83 µg/g db pVAC in the starting raw material.  Conclusions: The bread produced from 100% YHQCF may contribute to the pro-vitamin A status of bread consumers in SSA more than the 20% YHQCF composite. However, both bread samples are low in pVAC. In order to attain the required retinol equivalent level after bioconversion in the human body, consumption of other foods rich in vitamin A would be required to attain the required retinol equivalent level after bioconversion in the human body but can be enhanced if consumed with other foods rich in vitamin A.Keywords: High quality cassava flour; composite flour; Bread; Pro-vitamin A carotenoid; Nutrition


2020 ◽  
Vol 18 (1) ◽  
pp. 88-102
Author(s):  
A. T. OMIDIRAN ◽  
O. A. ADERIBIGBE ◽  
O. P. SOBUKOLA ◽  
O. O. AKINBULE

This study evaluated some quality attributes of pancakes from peeled and unpeeled sweetpotato flours and cassava starch. Cassava starch was substituted up to 30% of the total composite flour. The proximate composition, colour, carotenoid and functional properties of the different flour blends were determined. The flour blends were processed into pancakes and the proximate composition and sensory acceptability of the pancakes were determined. Data obtained were subjected to analysis of variance. The result showed that they were significant differences (p<0.05) in the functional properties of the flour blends. Bulk density, Water absorption capacity, Oil absorption capacity, swelling capacity ranged from 0.70 to 0.78 g/ml, 1.87 to 2.30 g/ml, 1.02 to 1.40 g/ml and 5.18% to 6.66%  respectively. There were significant differences (p<0.05) in the proximate composition of the pancake samples. The values ranged from 42.76 to 45.53%, 2.13 to 3.98%, 9.06 to 10.34%, 5.01 to 7.18%, 3.75 to 6.01% and 29.19 to 35.33% for moisture, ash, fat, protein, crude fibre and carbohydrate contents, respectively. Pancake produced from 100:0 peeled and unpeeled sweetpotato flour had the highest score for overall acceptability which can compare favorably, with pancakes from wheat flour which is the control sample. In conclusion, sweetpotato flour blended with cassava starch at different ratio gave good proximate and functional properties which resulted in pancakes of good quality attributes.    


2021 ◽  
pp. 108201322110694
Author(s):  
Ashura Katunzi-Kilewela ◽  
Leonard MP Rweyemamu ◽  
Lilian D Kaale ◽  
Oscar Kibazohi ◽  
Roman M Fortunatus

The study established the proximate composition, pasting, and functional properties of cassava flour (CF) blended with chia seeds flour (CSF). Composite flour was prepared by blending CF with CSF in the ratios of 95:05, 90:10, 85:15, 80:20, and 75:25 with CF and CSF used as controls, respectively. The effect of blending significantly (p < 0.05) increased protein, fat, fibre, and ash contents as CSF increased. On other hand, moisture and carbohydrate contents decreased significantly. Pasting properties of composite flour blends decreased significantly (p < 0.05) as the incorporation of CSF increased and a noticeable change was observed for composite flour (75:25) except for peak time and pasting temperature. Functional properties of water absorption capacity (WAC) of CSF were significantly different with CF and composite flour blends. Oil absorption capacity (OAC) of CF and CSF were significantly different, while the composite flour blends had varied OAC due to the inclusion of the different amounts of CSF. The swelling capacity (SC) of CF and CSF were not significantly different, but composite flour blends were significantly different from both CSF and CF. The least gelation concentration (LGC) and bulk density (BD) increased significantly as chia seeds increased. Increased concentration of chia CSF in the composite flour blends showed to alter the functional properties. This study recommends composite flour 75:25 for processing semiliquid products like porridge due to reduced pasting properties values that may be associated with increased energy density compared to CF.


2018 ◽  
Vol 25 (1) ◽  
pp. 66-75 ◽  
Author(s):  
Revathy Krishna Kumar ◽  
Manmath Bejkar ◽  
Shanshan Du ◽  
Luca Serventi

Gluten-free bread is generally associated with several quality defects such as reduced volume, dry texture and poor mouthfeel. Flaxseed gum has been shown to increase viscosity of bread dough. The aim of this study was to evaluate the effect of 1% (total base) addition of seed powders from flax ( Linum usitatissimum) and four acacia cultivars ( Acacia dealbata, A. decurrens, A. terminalis and A. verniciflua) on pasting properties, texture and volume of gluten-free bread. The incorporation of all seed powders reduced crumb hardness by 30–65% and increased specific loaf volume by 50%. Water absorption capacity and emulsifying ability contributed to these textural improvements and were attributed to water-soluble carbohydrates and insoluble fibre, while no foaming ability was detected. Darker crumb was observed upon flax addition, while dark particles were visible upon acacia addition. Scanning electron microscopy depicted absence of holes in the pore surface and viscoelastic starch–protein network in the seed powder containing bread.


2017 ◽  
Vol 06 (03) ◽  
Author(s):  
Iwe MO ◽  
Michael N ◽  
Madu NE ◽  
Obasi NE ◽  
Onwuka GI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document