Removal of Salmonella enterica serovar Typhimurium and Cronobacter sakazakii biofilms from food contact surfaces through enzymatic catalysis

2020 ◽  
Vol 40 (2) ◽  
Author(s):  
Carolina Ripolles‐Avila ◽  
Abel G. Ríos‐Castillo ◽  
Fabio Fontecha‐Umaña ◽  
José J. Rodríguez‐Jerez
2013 ◽  
Vol 76 (4) ◽  
pp. 662-667 ◽  
Author(s):  
M. CORCORAN ◽  
D. MORRIS ◽  
N. DE LAPPE ◽  
J. O'CONNOR ◽  
P. LALOR ◽  
...  

Foodborne pathogens can attach to, and survive on, food contact surfaces for long periods by forming a biofilm. Salmonella enterica is the second most common cause of foodborne illness in Ireland. The ability of S. enterica to form a biofilm could contribute to its persistence in food production areas, leading to cross-contamination of products and surfaces. Arising from a large foodborne outbreak of S. enterica serovar Agona associated with a food manufacturing environment, a hypothesis was formulated that the associated Salmonella Agona strain had an enhanced ability to form a biofilm relative to other S. enterica. To investigate this hypothesis, 12 strains of S. enterica, encompassing three S. enterica serovars, were assessed for the ability to form a biofilm on multiple food contact surfaces. All isolates formed a biofilm on the contact surfaces, and there was no consistent trend for the Salmonella Agona outbreak strain to produce a denser biofilm compared with other strains of Salmonella Agona or Salmonella Typhimurium. However, Salmonella Enteritidis biofilm was considerably less dense than Salmonella Typhimurium and Salmonella Agona biofilms. Biofilm density was greater on tile than on concrete, polycarbonate, stainless steel, or glass.


2009 ◽  
Vol 72 (9) ◽  
pp. 1841-1847 ◽  
Author(s):  
SHIN-HEE KIM ◽  
CHENG-I WEI

The molecular mechanism of biofilm formation by Salmonella Typhimuriun DT104 was characterized for a better understanding of its attachment and colonization in food processing environments. A library of random mutagenized clones was screened for phenotypic analyses of their ability to form biofilm, pellicle, curli, and cellulose. The genes identified were involved in lipopolysaccharide synthesis, assembly of flagella, regulation of rRNA biosynthesis, and outer membrane transportation and signaling. The insertion of transposon in flgK, rfbA, nusB, and pnp genes resulted in decreased biofilm formation. Alterations of flagellar and lipopolysaccharide production were confirmed in the flgK mutant and rfbA mutant, respectively. Biofilm formation by these four mutants in meat and poultry broths and their attachment on surfaces of stainless steel and glass were significantly reduced compared with those of the wild-type strain (P < 0.05). On the contrary, the mutation of STM4263 and yjcC genes in Salmonella Typhimuriun DT104 resulted in increased biofilm formation and attachment of the species in tested broths and on contact surfaces. Our findings suggest that many factors, such as production of exopolymeric substances and their efficient transportation through outer membrane, expression of flagella, and regulation of exoribonucleases and RNA-binding protein, could be involved in biofilm formation and attachment of Salmonella Typhimurium DT104 on contact surfaces.


2018 ◽  
Vol 280 ◽  
pp. 17-26 ◽  
Author(s):  
Piumi De Abrew Abeysundara ◽  
Nitin Dhowlaghar ◽  
Ramakrishna Nannapaneni ◽  
Mark W. Schilling ◽  
Barakat Mahmoud ◽  
...  

2020 ◽  
Vol 84 (1) ◽  
pp. 73-79
Author(s):  
CARLA L. SCHWAN ◽  
KARINA DESIREE ◽  
NORA M. BELLO ◽  
LEONARDO BASTOS ◽  
LYDA HOK ◽  
...  

ABSTRACT The lack of hygiene and sanitation practices and insufficient infrastructure in Cambodian informal markets may increase the risk of food contamination, specifically raw vegetables, which in turn may increase the chances of contracting a foodborne disease. The aims of this study in informal markets in Cambodia were (i) to quantify the prevalence of Salmonella enterica based upon differences in season of the year (rainy versus dry), surface types (food contact surfaces versus nonfood contact surfaces), and location of vendors within the market (inside versus outside) and (ii) to characterize S. enterica serotype prevalence. A total of 310 samples were screened for S. enterica prevalence following the U.S. Department of Agriculture guidelines, and results were confirmed by PCR assay. Whole genome sequencing was used to determine the serotype for each isolate in silico using SeqSero 1.0 on draft genomes. A total of 78 samples were confirmed positive for S. enterica. During the dry season, S. enterica was more prevalent on food contact surfaces than on nonfood contact surfaces (estimated probability of detection [confidence interval]: 0.41 [0.25, 0.59] and 0.17 [0.08, 0.32], respectively; P = 0.002), but no differences were apparent in the rainy season. No differences in S. enterica prevalence were found based on location within the market (P = 0.61). Sixteen S. enterica serotypes were detected across multiple surfaces. The most common S. enterica serotypes were Rissen (18 isolates), Hvittingfoss (11), Corvallis (10), Krefeld (8), Weltevreden (6), and Altona (6). Accurate data on the prevalence of S. enterica in informal markets are crucial for the development of effective surveillance and implementation of suitable intervention strategies at the domestic level, thus preventing foodborne illness. HIGHLIGHTS


Sign in / Sign up

Export Citation Format

Share Document