Gaseous chlorine dioxide inactivation of microbial contamination on whole black peppercorns

2021 ◽  
Author(s):  
Bhargavi Rane ◽  
Alison Lacombe ◽  
Jiewen Guan ◽  
David F. Bridges ◽  
Shyam Sablani ◽  
...  
2014 ◽  
Vol 42 (3) ◽  
pp. 322-331 ◽  
Author(s):  
Y.-A. Jeon ◽  
S. Lee ◽  
Y. Lee ◽  
H.-S. Lee ◽  
J.S. Sung ◽  
...  

Author(s):  
Xinyao Wei ◽  
Tushar Verma ◽  
Mary-Grace C. Danao ◽  
Monica A. Ponder ◽  
Jeyamkondan Subbiah

2005 ◽  
Vol 68 (6) ◽  
pp. 1176-1187 ◽  
Author(s):  
KAYE V. SY ◽  
MELINDA B. MURRAY ◽  
M. DAVID HARRISON ◽  
LARRY R. BEUCHAT

Gaseous chlorine dioxide (ClO2) was evaluated for effectiveness in killing Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes on fresh-cut lettuce, cabbage, and carrot and Salmonella, yeasts, and molds on apples, peaches, tomatoes, and onions. Inoculum (100 μl, ca. 6.8 log CFU) containing five serotypes of Salmonella enterica, five strains of E. coli O157:H7, or five strains of L. monocytogenes was deposited on the skin and cut surfaces of fresh-cut vegetables, dried for 30 min at 22°C, held for 20 h at 4°C, and then incubated for 30 min at 22°C before treatment. The skin surfaces of apples, peaches, tomatoes, and onions were inoculated with 100 μl of a cell suspension (ca. 8.0 log CFU) containing five serotypes of Salmonella, and inoculated produce was allowed to dry for 20 to 22 h at 22°C before treatment. Treatment with ClO2 at 4.1 mg/liter significantly (α = 0.05) reduced the population of foodborne pathogens on all produce. Reductions resulting from this treatment were 3.13 to 4.42 log CFU/g for fresh-cut cabbage, 5.15 to 5.88 log CFU/g for fresh-cut carrots, 1.53 to 1.58 log CFU/g for fresh-cut lettuce, 4.21 log CFU per apple, 4.33 log CFU per tomato, 1.94 log CFU per onion, and 3.23 log CFU per peach. The highest reductions in yeast and mold populations resulting from the same treatment were 1.68 log CFU per apple and 2.65 log CFU per peach. Populations of yeasts and molds on tomatoes and onions were not significantly reduced by treatment with 4.1 mg/liter ClO2. Substantial reductions in populations of pathogens on apples, tomatoes, and onions but not peaches or fresh-cut cabbage, carrot, and lettuce were achieved by treatment with gaseous ClO2 without markedly adverse effects on sensory qualities.


2017 ◽  
Vol 26 (2) ◽  
pp. 513-520 ◽  
Author(s):  
Armarynette Berrios-Rodriguez ◽  
Ocen M. Olanya ◽  
Bassam A. Annous ◽  
Jennifer M. Cassidy ◽  
Lynette Orellana ◽  
...  

2014 ◽  
Vol 77 (11) ◽  
pp. 1876-1881 ◽  
Author(s):  
VARA PRODDUK ◽  
BASSAM A. ANNOUS ◽  
LINSHU LIU ◽  
KIT L. YAM

Although freshly sprouted beans and grains are considered to be a source of nutrients, they have been associated with foodborne outbreaks. Sprouts provide good matrices for microbial localization and growth due to optimal conditions of temperature and humidity while sprouting. Also, the lack of a kill step postsprouting is a major safety concern. The objective of this work was to evaluate the effectiveness of chlorine dioxide gas treatment to reduce Salmonella on artificially inoculated mungbean sprouts. The effectiveness of gaseous chlorine dioxide (0.5 mg/liter of air) with or without tumbling (mechanical mixing) was compared with an aqueous chlorine (200 ppm) wash treatment. Tumbling the inoculated sprouts during the chlorine dioxide gas application for 15, 30, and 60 min reduced Salmonella populations by 3.0, 4.0, and 5.5 log CFU/g, respectively, as compared with 3.0, 3.0, and 4.0 log CFU/g reductions obtained without tumbling, respectively. A 2.0 log CFU/g reduction in Salmonella was achieved with an aqueous chlorine wash. The difference in microbial reduction between chlorine dioxide gas versus aqueous chlorine wash points to the important role of surface topography, pore structure, bacterial attachment, and/or biofilm formation on sprouts. These data suggested that chlorine dioxide gas was capable of penetrating and inactivating cells that are attached to inaccessible sites and/or are within biofilms on the sprout surface as compared with an aqueous chlorine wash. Consequently, scanning electron microscopy imaging indicated that chlorine dioxide gas treatment was capable of penetrating and inactivating cells attached to inaccessible sites and within biofilms on the sprout surfaces.


2018 ◽  
Vol 137 ◽  
pp. 142-148 ◽  
Author(s):  
Jia Wei ◽  
Yan Chen ◽  
Atawula Tiemur ◽  
Jide Wang ◽  
Bin Wu

Sign in / Sign up

Export Citation Format

Share Document