Combined Treatment with Low Concentrations of Aqueous and Gaseous Chlorine Dioxide Inactivates Escherichia coli O157:H7 and Salmonella Typhimurium Inoculated on Paprika

2017 ◽  
Vol 27 (3) ◽  
pp. 492-499 ◽  
Author(s):  
Hyun-Gyu Kim ◽  
Kyung Bin Song
2005 ◽  
Vol 68 (6) ◽  
pp. 1176-1187 ◽  
Author(s):  
KAYE V. SY ◽  
MELINDA B. MURRAY ◽  
M. DAVID HARRISON ◽  
LARRY R. BEUCHAT

Gaseous chlorine dioxide (ClO2) was evaluated for effectiveness in killing Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes on fresh-cut lettuce, cabbage, and carrot and Salmonella, yeasts, and molds on apples, peaches, tomatoes, and onions. Inoculum (100 μl, ca. 6.8 log CFU) containing five serotypes of Salmonella enterica, five strains of E. coli O157:H7, or five strains of L. monocytogenes was deposited on the skin and cut surfaces of fresh-cut vegetables, dried for 30 min at 22°C, held for 20 h at 4°C, and then incubated for 30 min at 22°C before treatment. The skin surfaces of apples, peaches, tomatoes, and onions were inoculated with 100 μl of a cell suspension (ca. 8.0 log CFU) containing five serotypes of Salmonella, and inoculated produce was allowed to dry for 20 to 22 h at 22°C before treatment. Treatment with ClO2 at 4.1 mg/liter significantly (α = 0.05) reduced the population of foodborne pathogens on all produce. Reductions resulting from this treatment were 3.13 to 4.42 log CFU/g for fresh-cut cabbage, 5.15 to 5.88 log CFU/g for fresh-cut carrots, 1.53 to 1.58 log CFU/g for fresh-cut lettuce, 4.21 log CFU per apple, 4.33 log CFU per tomato, 1.94 log CFU per onion, and 3.23 log CFU per peach. The highest reductions in yeast and mold populations resulting from the same treatment were 1.68 log CFU per apple and 2.65 log CFU per peach. Populations of yeasts and molds on tomatoes and onions were not significantly reduced by treatment with 4.1 mg/liter ClO2. Substantial reductions in populations of pathogens on apples, tomatoes, and onions but not peaches or fresh-cut cabbage, carrot, and lettuce were achieved by treatment with gaseous ClO2 without markedly adverse effects on sensory qualities.


2019 ◽  
Vol 82 (12) ◽  
pp. 2065-2070
Author(s):  
YOON-JAE JEONG ◽  
JAE-WON HA

ABSTRACT The objective of this study was to evaluate the efficacy of simultaneous UV-A and UV-B irradiation (UV-A+B) for inactivating Escherichia coli O157:H7, Salmonella Typhimurium, and Listeria monocytogenes in both phosphate-buffered saline (PBS) and apple juice. A cocktail of the three pathogens was inoculated into PBS and apple juice, and then the suspensions were irradiated with UV lamps of 356 nm (UV-A) and 307 nm (UV-B). Significant (P < 0.05) log reductions of the three pathogens in PBS and apple juice were observed after a maximum dose of UV-B alone or the UV-A+B treatment, but few reductions were observed upon UV-A treatment alone. At all irradiation times, antagonistic effects were observed for the application of UV-A+B against in E. coli O157:H7, Salmonella Typhimurium, and L. monocytogenes in PBS and apple juice. The degree of antagonistic effect in apple juice was greater than that in PBS. The results of this study suggest that the combined treatment of commercial UV-A and UV-B lamps would be impractical for disinfecting juice products. HIGHLIGHTS


Sign in / Sign up

Export Citation Format

Share Document