Evaluation of a Regional Approach to Standards for Plug-in Battery Electric Vehicles in Future Light-Duty Vehicle Greenhouse Gas Regulations

2014 ◽  
Vol 19 (1) ◽  
pp. 154-166 ◽  
Author(s):  
Nathan D. MacPherson ◽  
Gregory A. Keoleian ◽  
Jarod C. Kelly
Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1482
Author(s):  
Andrew Burnham ◽  
Zifeng Lu ◽  
Michael Wang ◽  
Amgad Elgowainy

Light-duty battery electric vehicles (BEVs) can reduce both greenhouse gas (GHG) and criteria air pollutant (CAPs) emissions, when compared to gasoline vehicles. However, research has found that while today’s BEVs typically reduce GHGs, they can increase certain CAPs, though with significant regional variability based on the electric grid mix. In addition, the environmental performance of electric and gasoline vehicles is not static, as key factors driving emissions have undergone significant changes recently and are expected to continue to evolve. In this study, we perform a cradle-to-grave life cycle analysis using state-level generation mix and vehicle operation emission data. We generated state-level emission factors using a projection from 2020 to 2050 for three light-duty vehicle types. We found that BEVs currently provide GHG benefits in nearly every state, with the median state’s benefit being between approximately 50% to 60% lower than gasoline counterparts. However, gasoline vehicles currently have lower total NOx, urban NOx, total PM2.5, and urban PM2.5 in 33%; 15%; 70%; and 10% of states, respectively. BEV emissions will decrease in 2050 due to a cleaner grid, but the relative benefits when compared to gasoline vehicles do not change significantly, as gasoline vehicles are also improving over this time.


2019 ◽  
Vol 25 (3) ◽  
pp. 355-370 ◽  
Author(s):  
Yali Zheng ◽  
Xiaoyi He ◽  
Hewu Wang ◽  
Michael Wang ◽  
Shaojun Zhang ◽  
...  

2020 ◽  
Vol 81 ◽  
pp. 102287 ◽  
Author(s):  
Hanjiro Ambrose ◽  
Alissa Kendall ◽  
Mark Lozano ◽  
Sadanand Wachche ◽  
Lew Fulton

2019 ◽  
Author(s):  
Alan Jenn ◽  
Inês Azevedo ◽  
Jeremy Joseph Michalek

The transportation sector is currently the largest contributor of greenhouse gas (GHG) emissions in the United States, and light-duty vehicles produce the majority of transportation emissions. Federal standards for fleet-averaged vehicle GHG emission rates and their corresponding corporate average fuel economy standards cap GHG emissions of the US light-duty vehicle fleet. In addition, two key policies aim to encourage a future fleet transition to alternative fuel vehicle (AFV) technologies: (1) incentives that treat AFVs favorably in the federal GHG standard, and (2) state zero-emission vehicle (ZEV) policy, which mandates AFV sales in some states. While each of these AFV policies can encourage AFV adoption, we show that net GHG emissions increase when both policies are present simultaneously. Specifically, we estimate changes in life cycle GHG emissions and gasoline consumption, relative to a pure federal fleet GHG standard (without AFV incentives or mandates), resulting from the introduction of (1) AFV incentives in federal fleet GHG policy, (2) state ZEV mandates, and (3) the combination of the two. We find that under fairly general conditions the combined AFV policies produce higher GHG emissions than either policy alone. This result is a consequence of state mandates increasing AFV sales in the presence of federal incentives that relax the fleet GHG standard when AFVs are sold. Using AFV sales projections from the Energy Information Administration and the California Air Resources Board, we estimate that the combined policies produce an increase on the order of 100 million tons of CO2 emissions cumulatively for new passenger cars sold from 2012 through 2025 relative to a pure GHG standard. AFV incentives in the GHG standard conflate policy goals by encouraging AFV adoption at the cost of higher fleet GHG emissions, and they permit even higher fleet GHG emissions when other policies, such as the ZEV mandate, increase AFV adoption.


2021 ◽  
Vol 241 ◽  
pp. 02004
Author(s):  
Yu Liu ◽  
Kunqi Ma ◽  
Hanzhengnan Yu ◽  
Jingyuan Li ◽  
Xiaopan An

In order to verify the necessity of the application of China Automotive Test Cycle which is constructed through actual driving data in china of more than 55 million kilometers in the energy consumption test of electric vehicles in China, this paper compares the characteristics of New European Test Cycle (NEDC), World-wide harmonized Light duty Test Cycle (WLTC) and China light-duty vehicle test cycle for passenger car(CLTC-P), and analyzes the differences of vehicle energy demand under different test cycles from theoretical and simulation point, simulation results show that the endurance mileage is longest and the energy recovery strategy is more effective under CLTC-P cycle. Finally, four types of vehicles are selected to carry out the endurance mileage test under these three test cycles. The test results are consistent with the simulation results. Therefore, in order to make the test results of electric vehicle energy consumption closer to the actual use of our country, CLTC-P should be selected to replace NEDC and WLTC cycle.


Sign in / Sign up

Export Citation Format

Share Document