Primary root and root hair development regulation by OsAUX4 and its participation in the phosphate starvation response

Author(s):  
Rigui Ye ◽  
Yunrong Wu ◽  
Zhenyu Gao ◽  
Hao Chen ◽  
Lixia Jia ◽  
...  
PLoS Genetics ◽  
2016 ◽  
Vol 12 (7) ◽  
pp. e1006194 ◽  
Author(s):  
Li Song ◽  
Haopeng Yu ◽  
Jinsong Dong ◽  
Ximing Che ◽  
Yuling Jiao ◽  
...  

Genes ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 726 ◽  
Author(s):  
Yi Wang ◽  
Yuehua Yu ◽  
Quanjia Chen ◽  
Guanghong Bai ◽  
Wenwei Gao ◽  
...  

Two class I family teosinte branched1/cycloidea/proliferating cell factor1 (TCP) proteins from allotetraploid cotton are involved in cotton fiber cell differentiation and elongation and root hair development. However, the biological function of most class II TCP proteins is unclear. This study sought to reveal the characteristics and functions of the sea-island cotton class II TCP gene GbTCP4 by biochemical, genetic, and molecular biology methods. GbTCP4 protein localizes to nuclei, binding two types of TCP-binding cis-acting elements, including the one in its promoter. Expression pattern analysis revealed that GbTCP4 is widely expressed in tissues, with the highest level in flowers. GbTCP4 is expressed at different fiber development stages and has high transcription in fibers beginning at 5 days post anthesis (DPA). GbTCP4 overexpression increases primary root hair length and density and leaf and stem trichomes in transgenic Arabidopsis relative to wild-type plants (WT). GbTCP4 binds directly to the CAPRICE (CPC) promoter, increasing CPC transcript levels in roots and reducing them in leaves. Compared with WT plants, lignin content in the stems of transgenic Arabidopsis overexpressing GbTCP4 increased, and AtCAD5 gene transcript levels increased. These results suggest that GbTCP4 regulates trichome formation and root hair development in Arabidopsis and may be a candidate gene for regulating cotton fiber elongation.


2017 ◽  
Vol 29 (2) ◽  
pp. 260-276 ◽  
Author(s):  
Yan Zhu ◽  
Liang Rong ◽  
Qiang Luo ◽  
Baihui Wang ◽  
Nana Zhou ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xi Wang ◽  
Yingli Zhou ◽  
Yanyu Xu ◽  
Baoshan Wang ◽  
Fang Yuan

Abstract Background Identifying genes involved in salt tolerance in the recretohalophyte Limonium bicolor could facilitate the breeding of crops with enhanced salt tolerance. Here we cloned the previously uncharacterized gene LbHLH and explored its role in salt tolerance. Results The 2,067-bp open reading frame of LbHLH encodes a 688-amino-acid protein with a typical helix-loop-helix (HLH) domain. In situ hybridization showed that LbHLH is expressed in salt glands of L. bicolor. LbHLH localizes to the nucleus, and LbHLH is highly expressed during salt gland development and in response to NaCl treatment. To further explore its function, we heterologously expressed LbHLH in Arabidopsis thaliana under the 35S promoter. The overexpression lines showed significantly increased trichome number and reduced root hair number. LbHLH might interact with GLABRA1 to influence trichome and root hair development, as revealed by yeast two-hybrid analysis. The transgenic lines showed higher germination percentages and longer roots than the wild type under NaCl treatment. Analysis of seedlings grown on medium containing sorbitol with the same osmotic pressure as 100 mM NaCl demonstrated that overexpressing LbHLH enhanced osmotic resistance. Conclusion These results indicate that LbHLH enhances salt tolerance by reducing root hair development and enhancing osmotic resistance under NaCl stress.


Sign in / Sign up

Export Citation Format

Share Document