scholarly journals Targeting innate immunity for neurodegenerative disorders of the central nervous system

2016 ◽  
Vol 138 (5) ◽  
pp. 653-693 ◽  
Author(s):  
Katrin I. Andreasson ◽  
Adam D. Bachstetter ◽  
Marco Colonna ◽  
Florent Ginhoux ◽  
Clive Holmes ◽  
...  
2019 ◽  
Vol 10 ◽  
Author(s):  
Robb Wesselingh ◽  
Helmut Butzkueven ◽  
Katherine Buzzard ◽  
David Tarlinton ◽  
Terence J. O'Brien ◽  
...  

Physiology ◽  
2000 ◽  
Vol 15 (5) ◽  
pp. 250-255
Author(s):  
Michael A. Klein ◽  
Adriano Aguzzi

Prion diseases are fatal neurodegenerative disorders of animals and humans. Here we address the role of the immune system in the spread of prions from peripheral sites to the central nervous system and its potential relevance to iatrogenic prion disease.


2014 ◽  
Vol 9 (6) ◽  
pp. 565-571 ◽  
Author(s):  
Kelly A. Meulendyke ◽  
Joshua D. Croteau ◽  
M. Christine Zink

2021 ◽  
Vol 12 ◽  
Author(s):  
Steven K. Yarmoska ◽  
Ali M. Alawieh ◽  
Stephen Tomlinson ◽  
Kimberly B. Hoang

The complement system is a highly conserved component of innate immunity that is involved in recognizing and responding to pathogens. The system serves as a bridge between innate and adaptive immunity, and modulation of the complement system can affect the entire host immune response to a foreign insult. Neoplastic diseases have been shown to engage the complement system in order to evade the immune system, gain a selective growth advantage, and co-opt the surrounding environment for tumor proliferation. Historically, the central nervous system has been considered to be an immune-privileged environment, but it is now clear that there are active roles for both innate and adaptive immunity within the central nervous system. Much of the research on the role of immunological modulation of neoplastic disease within the central nervous system has focused on adaptive immunity, even though innate immunity still plays a critical role in the natural history of central nervous system neoplasms. Here, we review the modulation of the complement system by a variety of neoplastic diseases of the central nervous system. We also discuss gaps in the current body of knowledge and comment on future directions for investigation.


2008 ◽  
Vol 198 (7) ◽  
pp. 1028-1036 ◽  
Author(s):  
Matthias Klein ◽  
Bianca Obermaier ◽  
Barbara Angele ◽  
Hans‐Walter Pfister ◽  
Hermann Wagner ◽  
...  

Molecules ◽  
2019 ◽  
Vol 24 (24) ◽  
pp. 4601 ◽  
Author(s):  
Katsuya Satoh ◽  
Takayuki Fuse ◽  
Toshiaki Nonaka ◽  
Trong Dong ◽  
Masaki Takao ◽  
...  

Human prion diseases are neurodegenerative disorders caused by prion protein. Although infectivity was historically detected only in the central nervous system and lymphoreticular tissues of patients with sporadic Creutzfeldt-Jakob disease, recent reports suggest that the seeding activity of Creutzfeldt-Jakob disease prions accumulates in various non-neuronal organs including the liver, kidney, and skin. Therefore, we reanalyzed autopsy samples collected from patients with sporadic and genetic human prion diseases and found that seeding activity exists in almost all digestive organs. Unexpectedly, activity in the esophagus reached a level of prion seeding activity close to that in the central nervous system in some CJD patients, indicating that the safety of endoscopic examinations should be reconsidered.


Sign in / Sign up

Export Citation Format

Share Document