scholarly journals Imaging Mechanisms of Disease Progression in Multiple Sclerosis: Beyond Brain Atrophy

2020 ◽  
Vol 30 (3) ◽  
pp. 251-266 ◽  
Author(s):  
Francesca Bagnato ◽  
Susan A. Gauthier ◽  
Cornelia Laule ◽  
George R. Wayne Moore ◽  
Riley Bove ◽  
...  

2008 ◽  
Vol 15 (2) ◽  
pp. 204-211 ◽  
Author(s):  
G Tedeschi ◽  
D Dinacci ◽  
M Comerci ◽  
L Lavorgna ◽  
G Savettieri ◽  
...  

Background To investigate in a large cohort of patients with multiple sclerosis (MS), lesion load and atrophy evolution, and the relationship between clinical and magnetic resonance imaging (MRI) correlates of disease progression. Methods Two hundred and sixty-seven patients with MS were studied at baseline and two years later using the same MRI protocol. Abnormal white matter fraction, normal appearing white matter fraction, global white matter fraction, gray matter fraction and whole brain fraction, T2-hyperintense, and T1-hypointense lesions were measured at both time points. Results The majority of patients were clinically stable, whereas MRI-derived brain tissue fractions were significantly different after 2 years. The correlation between MRI data at baseline and their variation during the follow-up showed that lower basal gray matter atrophy was significantly related with higher progression of gray matter atrophy during follow-up. The correlation between MRI parameters and disease duration showed that gray matter atrophy rate decreased with increasing disease duration, whereas the rate of white matter atrophy had a constant pattern. Lower basal gray matter atrophy was associated with increased probability of developing gray matter atrophy at follow-up, whereas gray matter atrophy progression over 2 years and new T2 lesion load were risk factors for whole brain atrophy progression. Conclusions In MS, brain atrophy occurs even after a relatively short period of time and in patients with limited progression of disability. Short-term brain atrophy progression rates differ across tissue compartments, as gray matter atrophy results more pronounced than white matter atrophy and appears to be a early phenomenon in the MS-related disease progression.



2000 ◽  
Vol 6 (6) ◽  
pp. 373-377 ◽  
Author(s):  
E Fisher ◽  
R A Rudick ◽  
G Cutter ◽  
M Baier ◽  
D Miller ◽  
...  

Brain atrophy measurement can provide an estimate of the amount of tissue destruction due to the pathologic processes in multiple sclerosis. The potential usefulness of atrophy as a marker of disease progression depends upon the concurrent and predictive relationships between atrophy and disability. A follow-up study was performed to measure atrophy and disability scores in patients from the Multiple Sclerosis Collaborative Research Group's phase III trial of IFNb-1a (Avonex) in relapsing-remitting multiple sclerosis. New data were obtained on 160 out of 172 eligible patients from the original trial were enrolled in the follow-up study approximately 8 years after randomization. The follow-up visit consisted of several tests and questionnaires including a clinical exam to determine Expanded Disability Status Score (EDSS) and Multiple Sclerosis Functional Composite (MSFC), and a magnetic resonance imaging exam to calculate the brain parenchymal fraction. Brain parenchymal fraction was correlated with both EDSS and MSFC at each of the four time points for which data were available (baseline 1, 2 and 8 years). Furthermore, the change in BPF was correlated with the changes in disability scores from the end of the phase III trial to the follow-up exam. These data suggest that brain atrophy may be a useful and clinically relevant marker of disease progression in relapsing-remitting MS.



2017 ◽  
Vol 24 (10) ◽  
pp. 1356-1365 ◽  
Author(s):  
Tue Kjølhede ◽  
Susanne Siemonsen ◽  
Damian Wenzel ◽  
Jan-Patrick Stellmann ◽  
Steffen Ringgaard ◽  
...  

Background: Multiple sclerosis (MS) is characterised by accelerated brain atrophy, which relates to disease progression. Previous research shows that progressive resistance training (PRT) can counteract brain atrophy in other populations. Objective: To evaluate the effects of PRT by magnetic resonance imaging (MRI) and clinical measures of disease progression in people with MS. Methods: This study was a 24-week randomised controlled cross-over trial, including a Training ( n = 18, 24 weeks of PRT followed by self-guided physical activity) and Waitlist group ( n = 17, 24 weeks of habitual lifestyle followed by PRT). Assessments included disability measures and MRI (lesion load, global brain volume, percentage brain volume change (PBVC) and cortical thickness). Results: While the MS Functional Composite score improved, Expanded Disability Status Scale, lesion load and global brain volumes did not differ between groups. PBVC tended to differ between groups and higher absolute cortical thickness values were observed in 19 of 74 investigated cortical regions after PRT. Observed changes were confirmed and reproduced when comparing relative cortical thickness changes between groups for four areas: anterior cingulate gyrus, temporal pole, orbital sulcus and inferior temporal sulcus. Conclusion: PRT seem to induce an increase in cortical thickness, indicating that PRT have a neuroprotective or even neuroregenerative effect in relapsing-remitting MS.



2009 ◽  
Vol 36 (S 02) ◽  
Author(s):  
A Hahn ◽  
T Schmidt-Wilcke ◽  
S Prügl ◽  
G Schuierer ◽  
U Bogdahn ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document