Additively Manufactured Ingot For Interim Dental Restorations Fabrication Using A Chairside Milling Machine

2021 ◽  
Author(s):  
Marcelo Gabriel Pérez‐Giugovaz ◽  
Delaram Mostafavi ◽  
Marta Revilla‐León
2020 ◽  
Author(s):  
Nei Da Silva Paz Neto ◽  
Marcus V. Americano da Costa

This paper presents the development of a 4-axis CNC milling machine for making dental restorations. The machine was developed to help spread knowledge about CAD/CAM to future professionals in healthcare area, including automation engineering. The CAD/CAM systems can be found in dental clinics and specialized laboratories with a high added value, as it brings reliability, precision, and speed to the prosthesis developed and, thereby, increasing the qualityof the nal product. With this high cost, not all dental professionals can have this type of technology. However, it is demonstrated the possibility of building these systems at a reduced cost and applying them to restorative dentistry. Therefore, this work results in instigating of the engineering education and training future professionals in mechatronics research with applications to the Odontology.


Author(s):  
L.E. Murr ◽  
A.B. Draper

The industrial characterization of the machinability of metals and alloys has always been a very arbitrarily defined property, subject to the selection of various reference or test materials; and the adoption of rather naive and misleading interpretations and standards. However, it seems reasonable to assume that with the present state of knowledge of materials properties, and the current theories of solid state physics, more basic guidelines for machinability characterization might be established on the basis of the residual machined microstructures. This approach was originally pursued by Draper; and our presentation here will simply reflect an exposition and extension of this research.The technique consists initially in the production of machined chips of a desired test material on a horizontal milling machine with the workpiece (specimen) mounted on a rotary table vice. A single cut of a specified depth is taken from the workpiece (0.25 in. wide) each at a new tool location.


Author(s):  
Duncan P. Hand ◽  
Jonathan P. Parry ◽  
Mateusz Matysiak ◽  
Fraser C. Dear ◽  
J Graham Crowder ◽  
...  

2018 ◽  
Vol 69 (6) ◽  
pp. 1598-1602
Author(s):  
Alice Arina Ciocan Pendefunda ◽  
Constanta Mocanu ◽  
Doriana Agop Forna ◽  
Cristina Iordache ◽  
Elena Luca ◽  
...  

The purpose of the study is to investigate the electrochemical behavior of two dental alloys: palladium alloy (Palidor) and Ni-Cr alloy (Verasoft) in three types of artificial saliva. Determination of corrosion potential and recording of linear and cyclic polarization curves were performed with PGP201 potentiostat (VoltaLab 21- Radelkis Copenhagen. In order to study the modifications produced on the surface of the electrodes, a complex optical microscope MC 1 research type (IOR, Romania) was used, adapted to a digital camera, which was connected to a computer for the digital acquisition of images . Two metal alloys based on Ag-Pd and Ni-Cr were used for the experiments. The materials used came from different types of dental restorations removed from the oral cavity of the patients after a 5-15 years period. As corrosion environments, three artificial saliva were used: Fusayama, Afnor and Rondelli. The Pd-Ag dental alloy exhibits a very good corrosion resistance and the treatment in the Afnor saliva does not affect the surface of the alloy. Electrochemical behavior in Fusayama-Meyer�s saliva of the alloy surface results in a series of spots representing deposits of insoluble salts resulting from the oxidation process, while in the Rondelli saliva there is a series of small corrosion points on the alloy surface. The behavior of the Verasoft alloy in the Afnor and Rondelli saliva is similar; In both solutions, the potential breakthroughs are very close, but in Fusayama-Meyer�s saliva, the potential for initiation of corrosion points is very low (206 mV), a potential that can be encountered in the oral cavity. All metals and metal alloys, even the noble and semi-precious ones, are susceptible to corrosion, forming compounds with properties different from those of the metal or base alloy, which change their surface condition. Metallic dental restorations are permanently affected by the factors of the oral environment (physical-mechanical, chemical and biological), being subjected to a continuous process of degradation.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5824
Author(s):  
Weronika Czepułkowska-Pawlak ◽  
Emilia Wołowiec-Korecka ◽  
Leszek Klimek

Abrasive blasting is a process widely used in dentistry. One of the uses is the development of metal surfaces for connections with ceramics in fixed prosthetic restorations. The purpose of this paper was to check how the rough surface profile (width, height, and depth on unevenness) impacts the surface’s condition, like its wettability and percentage of stuck abrasives. The Ni-Cr alloy surface was abrasive blasted by silicon carbide with the various pressure parameters (0.2, 0.4, and 0.6 MPa) and abrasive particle sizes (50, 110, and 250 µm). Cleaned surfaces were examined for roughness, wettability, and percentage of stuck abrasive particles on the surface. The surface after abrasive blasting using 110 µm of abrasive size and 0.4 MPa pressure has the best wettability results. The width of unevenness may cause it. When the unevenness has too small or too large width and depth, the fluids may not cover the entire cavities because of locking the air. The surface condition of dental alloys directly affects metal–ceramic connection strength. The knowledge about the impact of the abrasive blasting parameters on the bond strength will allow one to create durable dental restorations.


Sign in / Sign up

Export Citation Format

Share Document