scholarly journals A sticky proposition: The endothelial glycocalyx and von Willebrand factor

2020 ◽  
Vol 18 (4) ◽  
pp. 781-785 ◽  
Author(s):  
Seon Jae Choi ◽  
David Lillicrap
Author(s):  
Miruna Popa ◽  
Markus Hecker ◽  
Andreas H. Wagner

AbstractADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) is a zinc-containing metalloprotease also known as von Willebrand factor (vWF)-cleaving protease. Low ADAMTS13 plasma levels are associated with an increased risk of arterial thrombosis, including myocardial infarction and cerebrovascular disease. The expression and regulation of this metalloprotease in human endothelial cells have not been systematically investigated. In this study, we demonstrate that ADAMTS13 expression is inhibited by proinflammatory cytokines tumor necrosis factor-α and interferon-γ as well as by CD40 ligand, which was hitherto unknown. Factors protecting against atherosclerosis such as exposure to continuous unidirectional shear stress, interleukin-10, or different HMG-CoA reductase inhibitors like, e.g., simvastatin, atorvastatin, or rosuvastatin, did not influence ADAMTS13 expression. Unidirectional periodic orbital shear stress, mimicking oscillatory flow conditions found at atherosclerosis-prone arterial bifurcations, had also no effect. In contrast, a reciprocal correlation between ADAMTS13 and vWF expression in endothelial cells depending on the differentiation state was noted. ADAMTS13 abundance significantly rose on both the mRNA and intracellular protein level and also tethered to the endothelial glycocalyx with the degree of confluency while vWF protein levels were highest in proliferating cells but significantly decreased upon reaching confluence. This finding could explain the anti-inflammatory and antithrombotic phenotype of dormant endothelial cells mediated by contact inhibition.


2018 ◽  
Vol 2 (18) ◽  
pp. 2347-2357 ◽  
Author(s):  
Thejaswi Kalagara ◽  
Tracy Moutsis ◽  
Yi Yang ◽  
Karin I. Pappelbaum ◽  
Anne Farken ◽  
...  

Abstract The dynamic change from a globular conformation to an elongated fiber determines the ability of von Willebrand factor (VWF) to trap platelets. Fiber formation is favored by the anchorage of VWF to the endothelial cell surface, and VWF-platelet aggregates on the endothelium contribute to inflammation, infection, and tumor progression. Although P-selectin and ανβ3-integrins may bind VWF, their precise role is unclear, and additional binding partners have been proposed. In the present study, we evaluated whether the endothelial glycocalyx anchors VWF fibers to the endothelium. Using microfluidic experiments, we showed that stabilization of the endothelial glycocalyx by chitosan oligosaccharides or overexpression of syndecan-1 (SDC-1) significantly supports the binding of VWF fibers to endothelial cells. Heparinase-mediated degradation or impaired synthesis of heparan sulfate (HS), a major component of the endothelial glycocalyx, reduces VWF fiber–dependent platelet recruitment. Molecular interaction studies using flow cytometry and live-cell fluorescence microscopy provided further evidence that VWF binds to HS linked to SDC-1. In a murine melanoma model, we found that protection of the endothelial glycocalyx through the silencing of heparanase increases the number of VWF fibers attached to the wall of tumor blood vessels. In conclusion, we identified HS chains as a relevant binding factor for VWF fibers at the endothelial cell surface in vitro and in vivo.


1986 ◽  
Vol 55 (02) ◽  
pp. 276-278 ◽  
Author(s):  
F Brosstad ◽  
Inge Kjønniksen ◽  
B Rønning ◽  
H Stormorken

SummaryA method for visualization of the multimeric forms of von Willebrand Factor (vWF) in plasma and platelets is described. The method is based upon: 1) Separation of the vWF multimers by SDS-agarose electrophoresis, 2) Subsequent blotting of the vWF multimers onto nitrocellulose, 3) Immunolocalization and visualization of the vWF pattern by the sequential incubation of the blot with a) primary vWF antiserum, b) peroxidase- or beta-galactosidase-conjugated secondary antibodies and a relevant chromogenic substrate.


Sign in / Sign up

Export Citation Format

Share Document