Modeling Normalcy‐Dominant Ordinal Time Series: An Application to Air Quality Level

Author(s):  
Mengya Liu ◽  
Fukang Zhu ◽  
Ke Zhu
2012 ◽  
Vol 197 ◽  
pp. 271-277
Author(s):  
Zhu Ping Gong

Small data set approach is used for the estimation of Largest Lyapunov Exponent (LLE). Primarily, the mean period drawback of Small data set was corrected. On this base, the LLEs of daily qualified rate time series of HZ, an electronic manufacturing enterprise, were estimated and all positive LLEs were taken which indicate that this time series is a chaotic time series and the corresponding produce process is a chaotic process. The variance of the LLEs revealed the struggle between the divergence nature of quality system and quality control effort. LLEs showed sharp increase in getting worse quality level coincide with the company shutdown. HZ’s daily qualified rate, a chaotic time series, shows us the predictable nature of quality system in a short-run.


2021 ◽  
Vol 102 ◽  
pp. 106957
Author(s):  
Hui Liu ◽  
Guangxi Yan ◽  
Zhu Duan ◽  
Chao Chen

2016 ◽  
Vol 8 (9) ◽  
pp. 881 ◽  
Author(s):  
Jungho Kang ◽  
Kwang-Il Hwang

2018 ◽  
Author(s):  
Suzane S. de Sá ◽  
Brett B. Palm ◽  
Pedro Campuzano-Jost ◽  
Douglas A. Day ◽  
Weiwei Hu ◽  
...  

Abstract. Fundamental to quantifying the influence of human activities on climate and air quality is an understanding of how anthropogenic emissions affect the concentrations and composition of airborne particulate matter (PM). The central Amazon basin, especially around the city of Manaus, Brazil, has experienced rapid changes in the past decades due to ongoing urbanization. Herein, changes in the concentration and composition of submicron PM due to pollution downwind of the Manaus metropolitan region are reported as part of the GoAmazon2014/5 experiment. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a suite of other gas- and particle-phase instruments were deployed at the T3 research site, 70 km downwind of Manaus, during the wet season. At this site, organic components represented on average 79 ± 7 % of the non-refractory PM1 mass concentration, which was in the same range as several upwind sites. The organic PM1 was, however, considerably more oxidized at T3 compared to upwind measurements. Positive-matrix factorization (PMF) was applied to the time series of organic mass spectra collected at the T3 site, yielding three factors representing secondary processes (73 ± 15 % of total organic mass concentration) and three factors representing primary anthropogenic emissions (27 ± 15 %). Fuzzy c-means clustering (FCM) was applied to the afternoon time series of concentrations of NOy, ozone, total particle number, black carbon, and sulfate. Four clusters were identified and characterized by distinct airmass origins and particle compositions. Two clusters, Bkgd-1 and Bkgd-2, were associated with background conditions. Bkgd-1 appeared to represent near-field atmospheric PM production and oxidation of a day or less. Bkgd-2 appeared to represent material transported and oxidized for two or more days, often with out-of-basin contributions. Two other clusters, Pol-1 and Pol-2, represented the Manaus influence, one apparently associated with the northern region of Manaus and the other with the southern region of the city. A composite of the PMF and FCM analyses provided insights into the anthropogenic effects on PM concentration and composition. The increase in mass concentration of submicron PM ranged from 25 % to 200 % under polluted compared to background conditions, including contributions from both primary and secondary PM. Furthermore, a comparison of PMF factor loadings for different clusters suggested a shift in the pathways of PM production under polluted conditions. Nitrogen oxides may have played a critical role in these shifts. Increased concentrations of nitrogen oxides can shift pathways of PM production from HO2-dominant to NO-dominant as well as increase the concentrations of oxidants in the atmosphere. Consequently, the oxidation of biogenic and anthropogenic precursor gases as well as the oxidative processing of pre-existing atmospheric PM can be accelerated. The combined set of results demonstrates the susceptibility of atmospheric chemistry, air quality, and associated climate forcing to anthropogenic perturbations over tropical forests.


2014 ◽  
Vol 7 (3) ◽  
pp. 1001-1024 ◽  
Author(s):  
P. A. Makar ◽  
R. Nissen ◽  
A. Teakles ◽  
J. Zhang ◽  
Q. Zheng ◽  
...  

Abstract. The balance between turbulent transport and emissions is a key issue in understanding the formation of O3 and particulate matter with diameters less than 2.5 μm (PM2.5). Discrepancies between observed and simulated concentrations for these species have, in the past, been ascribed to insufficient turbulent mixing, particularly for atmospherically stable environments. This assumption may be simplistic – turbulent mixing deficiencies may explain only part of these discrepancies, and as turbulence parameterizations are improved, the timing of primary PM2.5 emissions may play a much more significant role in the further reduction of model error. In a study of these issues, two regional air-quality models, the Community Multi-scale Air Quality model (CMAQ, version 4.6) and A Unified Regional Air-quality Modelling System (AURAMS, version 1.4.2), were compared to observations for a domain in north-western North America. The air-quality models made use of the same emissions inventory, emissions processing system, meteorological driving model, and model domain, map projection and horizontal grid, eliminating these factors as potential sources of discrepancies between model predictions. The initial statistical comparison between the models and monitoring network data showed that AURAMS' O3 simulations outperformed those of this version of CMAQ4.6, while CMAQ4.6 outperformed AURAMS for most PM2.5 statistical measures. A process analysis of the models revealed that many of the differences between the models' results could be attributed to the strength of turbulent diffusion, via the choice of an a priori lower limit in the magnitude of vertical diffusion coefficients, with AURAMS using 0.1 m2 s−1 and CMAQ4.6 using 1.0 m2 s−1. The use of the larger CMAQ4.6 value for the lower limit of vertical diffusivity within AURAMS resulted in a similar performance for the two models (with AURAMS also showing improved PM2.5, yet degraded O3, and a similar time series as CMAQ4.6). The differences between model results were most noticeable at night, when the higher minimum turbulent diffusivity resulted in an erroneous secondary peak in predicted night-time O3. A spatially invariant and relatively high lower limit in diffusivity could not reduce errors in both O3 and PM2.5 fields, implying that other factors aside from the strength of turbulence might be responsible for the PM2.5 over-predictions. Further investigation showed that the magnitude, timing and spatial allocation of area source emissions could result in improvements to PM2.5 performance with minimal O3 performance degradation. AURAMS was then used to investigate a land-use-dependant lower limit in diffusivity of 1.0 m2 s−1 in urban regions, linearly scaling to 0.01 m2s−1 in rural areas, as employed in CMAQ5.0.1. This strategy was found to significantly improve mean statistics for PM2.5 throughout the day and mean O3 statistics at night, while significantly degrading (halving) midday PM2.5 correlation coefficients and slope of observed to model simulations. Time series of domain-wide model error statistics aggregated by local hour were shown to be a useful tool for performance analysis, with significant variations in performance occurring at different hours of the day. The use of the land-use-dependant lower limit in diffusivity was also shown to reduce the model's sensitivity to the temporal allocation of its emissions inputs. The modelling scenarios suggest that while turbulence plays a key role in O3 and PM2.5 formation in urban regions, and in their downwind transport, the spatial and temporal allocation of primary PM2.5 emissions also has a potentially significant impact on PM2.5 concentration levels. The results show the complex nature of the interactions between turbulence and emissions, and the potential of the strength of the former to mask the impact of changes in the latter.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2507 ◽  
Author(s):  
Francisco Ramos ◽  
Sergio Trilles ◽  
Andrés Muñoz ◽  
Joaquín Huerta

Nowadays, citizens have a huge concern about the quality of life in their cities, especially regarding the level of pollution. Air quality level is of great importance, not only to plan our activities but also to take precautionary measures for our health. All levels of governments are concerned about it and have built their indexes to measure the air quality level in their countries, regions or cities. Taking into account the existing sensor infrastructure within smart cities, it makes possible to evaluate these indices and to know anywhere the level of pollution in real-time. In this scenario, the main objective of the current work is to foster citizens’ awareness about pollution by offering pollution-free routes. To achieve this goal, a technology-agnostic methodology is presented, which allows for creating pollution-free routes across cities depending on the level of pollution in each zone. The current work includes an extensive study of existing air quality indices, and proposes and carries forward to deployment of the defined methodology in a big city, such as Madrid (Spain).


Sign in / Sign up

Export Citation Format

Share Document