Is phylogenetic diversity a good proxy for functional diversity of plant communities? A case study from urban habitats

2016 ◽  
Vol 27 (5) ◽  
pp. 1036-1046 ◽  
Author(s):  
Zdeňka Lososová ◽  
Natálie Čeplová ◽  
Milan Chytrý ◽  
Lubomír Tichý ◽  
Jiří Danihelka ◽  
...  
2022 ◽  
Vol 324 ◽  
pp. 107708
Author(s):  
Vicente García-Navas ◽  
Carlos Martínez-Núñez ◽  
Rubén Tarifa ◽  
Antonio J. Manzaneda ◽  
Francisco Valera ◽  
...  

2020 ◽  
Vol 12 (2) ◽  
pp. 568 ◽  
Author(s):  
Serra W. Buchanan ◽  
Megan Baskerville ◽  
Maren Oelbermann ◽  
Andrew M. Gordon ◽  
Naresh V. Thevathasan ◽  
...  

Achieving biologically diverse agricultural systems requires a commitment to changes in land use. While in-field agrobiodiversity is a critical route to such a transition, riparian systems remain an important, yet understudied, pathway to achieve key diversity and ecosystem services and targets. Notably, at the interface of agricultural landscapes and aquatic systems, the diversification of riparian buffers with trees reduces the non-point source pollution in waterways. However, in riparian agroforestry systems, little is known about herbaceous community patterns and, importantly, the herbaceous community’s role in governing carbon (C) and nitrogen (N) cycling. Our study investigated herbaceous community taxonomic and phylogenetic diversity patterns in riparian (i) grasslands (GRASSLAND), (ii) rehabilitated agroforests (AGROFOREST-REHAB), and (iii) remnant forests (AGROFOREST-NATURAL). We then determined the biodiversity-ecosystem function relationships between community functional diversity metrics, C and N cycling, and greenhouse gas fluxes. We observed significant differences in taxonomic and phylogenetic diversity among riparian buffer types. We found that herbaceous plant communities in riparian agroforestry systems expressed plant trait syndromes associated with fast-growing, resource acquiring strategies, while grassland buffer plants exhibited slow-growing, resource conserving strategies. Herbaceous communities with high functional diversity and resource acquiring trait syndromes, such as those in the agroforestry riparian systems, were significantly correlated with lower rates of soil CO2 efflux and N mineralization, both of which are key fluxes related to ecosystem service delivery. Our findings provide further evidence that functionally diverse, and not necessarily taxonomically diverse, plant communities are strongly correlated to positive ecosystem processes in riparian agroforestry systems, and that these communities contribute to the transition of agricultural lands toward biologically and functionally diverse landscapes.


2020 ◽  
Vol 10 (5) ◽  
pp. 464-474
Author(s):  
K. V. Dudova ◽  
G. G. Ataballyev ◽  
A. A. Akhmetzhanova ◽  
D. M. Gulov ◽  
S. V. Dudov ◽  
...  

Author(s):  
Dorothy Borowy ◽  
Chris Swan

Despite a growing literature-base devoted to documenting biodiversity patterns in cities, little is known about the processes that influence these patterns, and whether they are consistent over time. In particular, numerous studies have identified the capacity of cities to host a rich diversity of plant species. This trend, however, is driven primarily by introduced species, which comprise a large proportion of the urban species pool relative to natives. Using an experimental common garden study, we assessed the relative influence of local assembly processes (i.e., soil environmental filtering and competition from spontaneous urban species) on the taxonomic and functional diversity of native plant communities sampled over four seasons in 2016-2018. Taxonomic and functional diversity exhibited different responses to local processes, supporting the general conclusion that species- and trait-based measures of biodiversity offer distinct insights into community assembly dynamics. Additionally, we found that neither soil nor competition from spontaneous urban species influenced taxonomic or functional composition of native species. Functional composition, however, did shift strongly over time and was driven by community-weighted mean differences in both measured traits (maximum height, Hmax; specific leaf area, SLA; leaf chlorophyll a fluorescence, chl a) and the relative proportions of different functional groups (legumes, annual and biennial-perennial species, C4 grasses, and forbs). In contrast, taxonomic composition only diverged between early and late seasons. Overall, our results indicate that native species are not only capable of establishing and persisting in vacant urban habitats, they can functionally respond to local filtering pressures over time. This suggests that regional dispersal limitation may be a primary factor limiting native species in urban environments. Thus, future regreening and management plans should focus on enhancing the dispersal potential of native plant species in urban environments, in order to achieve set goals for increasing native species diversity and associated ecosystem services in cities.


2013 ◽  
Vol 21 (2) ◽  
pp. 153-162
Author(s):  
Wang Guohong ◽  
Wang Xiaoping ◽  
Zhang Weikang ◽  
Li He ◽  
Du Lianhai ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Alexia Stokes ◽  
Guillermo Angeles ◽  
Fabien Anthelme ◽  
Eduardo Aranda-Delgado ◽  
Isabelle Barois ◽  
...  

Abstract Objectives Altitude integrates changes in environmental conditions that determine shifts in vegetation, including temperature, precipitation, solar radiation and edaphogenetic processes. In turn, vegetation alters soil biophysical properties through litter input, root growth, microbial and macrofaunal interactions. The belowground traits of plant communities modify soil processes in different ways, but it is not known how root traits influence soil biota at the community level. We collected data to investigate how elevation affects belowground community traits and soil microbial and faunal communities. This dataset comprises data from a temperate climate in France and a twin study was performed in a tropical zone in Mexico. Data description The paper describes soil physical and chemical properties, climatic variables, plant community composition and species abundance, plant community traits, soil microbial functional diversity and macrofaunal abundance and diversity. Data are provided for six elevations (1400–2400 m) ranging from montane forest to alpine prairie. We focused on soil biophysical properties beneath three dominant plant species that structure local vegetation. These data are useful for understanding how shifts in vegetation communities affect belowground processes, such as water infiltration, soil aggregation and carbon storage. Data will also help researchers understand how plant communities adjust to a changing climate/environment.


The Holocene ◽  
2016 ◽  
Vol 27 (5) ◽  
pp. 651-664 ◽  
Author(s):  
Krystyna Milecka ◽  
Grzegorz Kowalewski ◽  
Barbara Fiałkiewicz-Kozieł ◽  
Mariusz Gałka ◽  
Mariusz Lamentowicz ◽  
...  

Wetlands are very vulnerable ecosystems and sensitive to changes in the ground water table. For the last few thousand years, hydrological balance has also been influenced by human activity. To improve their cropping features, drainage activity and fertilizing were applied. The drainage process led to an abrupt change of environment, the replacement of plant communities and the entire ecosystem. The problem of carbon sequestration is very important nowadays. A higher accumulation rate is related to higher carbon accumulation, but the intensity of carbon sequestration depends on the type of mire, habitat, and climatic zone. The main aim of this article was an examination of the changes in poor-fen ecosystem during the last 200 years in relation to natural and anthropogenic factors, using paleoecological methods (pollen and macrofossils). The second aim was a detailed investigation of the sedimentary record to aid our understanding of carbon sequestration in the poor fen of temperate zone. This case study shows that fens in temperate zones, in comparison with boreal ones, show higher carbon accumulation rates which have been especially intensive over the last few decades. To reconstruct vegetation changes, detailed palynological and macrofossil analyses were done. A 200-year history of the mire revealed that it was influenced by human activity to much degree. However, despite the nearby settlement and building of the drainage ditch, the precious species and plant communities still occur.


PLoS Biology ◽  
2005 ◽  
Vol 4 (1) ◽  
pp. e1 ◽  
Author(s):  
Colin Fontaine ◽  
Isabelle Dajoz ◽  
Jacques Meriguet ◽  
Michel Loreau

2007 ◽  
Vol 53 (3) ◽  
pp. 192-195 ◽  
Author(s):  
Takehiro Sasaki ◽  
Tomoo Okayasu ◽  
Yasuhito Shirato ◽  
Jamsran Undarmaa ◽  
Kazuhiko Takeuchi

Sign in / Sign up

Export Citation Format

Share Document