The Upper Contact Unit of the Sudbury Igneous Complex in the Garson region: Constraints on the depth of origin of a peak ring at the Sudbury impact structure

2020 ◽  
Vol 55 (8) ◽  
Author(s):  
Richard A. F. Grieve ◽  
Gordon R. Osinski
2020 ◽  
Vol 57 (11) ◽  
pp. 1324-1336
Author(s):  
D. Anders ◽  
G.R. Osinski ◽  
R.A.F. Grieve ◽  
E.A. Pilles ◽  
A. Pentek ◽  
...  

The 1.85 Ga Sudbury impact structure is considered a remnant of a peak-ring or multi-ring basin with an estimated original diameter of 150 to 200 km. The Offset Dikes are radial and concentric dikes around the Sudbury Igneous Complex (SIC) and are composed of the so-called inclusion-rich Quartz Diorite (IQD) and inclusion-poor Quartz Diorite (QD), and in some Offset Dikes, Metabreccia (MTBX). We carried out a detailed field and analytical investigation of MTBX from the Parkin Offset Dike in the North Range of the Sudbury structure. Our observations suggest that MTBX represents impact breccia that originally formed underneath the Main Mass of the SIC and that was subsequently contact-metamorphosed and entrained during the emplacement of the Parkin Offset Dike. The MTBX bears no resemblance to the QD and IQD in which it is hosted, but it does share many similarities with Footwall Breccia (FWBX), suggesting that the two shared a similar initial origin. A genetic relationship between MTBX and FWBX is also supported by whole rock geochemical analyses.


1994 ◽  
Vol 31 (11) ◽  
pp. 1654-1660 ◽  
Author(s):  
Jianjun Wu ◽  
Bernd Milkereit ◽  
David Boerner

Herein, we present new high-resolution seismic images of the Sudbury Impact Structure, acquired across the Sudbury Igneous Complex and its environs, which provide evidence for the relative timing of the deformation events that reshaped the initial Sudbury Structure. The seismic images show that the lower unit of the Sudbury basinal fill sediments, the Onwatin argillite, is penetrated by a set of blind, imbricated thrusts, whereas the overlying Chelmsford turbidites are unaffected by faulting. We interpret this observation to mean that the deposition of the Chelmsford sediments postdates the latest major deformation of the Sudbury Structure, suggesting that the uniform paleocurrent trends observed in the Chelmsford turbidites are not related to the initial shape of the Sudbury Structure.


2018 ◽  
Vol 55 (3) ◽  
pp. 230-240 ◽  
Author(s):  
Eric A. Pilles ◽  
Gordon R. Osinski ◽  
Richard A.F. Grieve ◽  
Adam B. Coulter ◽  
David Smith ◽  
...  

The Offset Dykes are impact melt-bearing dykes related to the 1.85 Ga Sudbury impact structure. Currently, the dykes extend radially outward from—or occur concentrically around—the Sudbury Igneous Complex, which is the remnant of a differentiated impact melt sheet and the source of the dykes. The recently identified three Pele Offset Dykes intrude into the Archean rocks north of the Sudbury Igneous Complex. In this study, the Pele dykes are characterized for the first time by a combination of fieldwork, optical microscopy, electron microprobe analyses, and bulk geochemical analyses. The Pele Offset Dykes stand out from the other Offset Dykes at Sudbury in two significant ways: (i) All other known Offset Dykes consist of an inclusion-rich lithology in the center of the dyke and an inclusion-poor lithology along the margins. The Pele dykes, however, are only composed of the inclusion-poor phase. (ii) The Pele dykes—particularly the Central and Eastern dykes—have a more evolved chemical composition relative to the other Offset Dykes. These observations suggest that the Pele dykes were emplaced after the other known Offset Dykes during two injection events: the Western followed by the Central and Eastern Pele dykes.


2021 ◽  
pp. 104301
Author(s):  
Sarah Hashmi ◽  
Matthew I. Leybourne ◽  
Daniel Layton-Matthews ◽  
Stewart Hamilton ◽  
M. Beth McClenaghan ◽  
...  

2021 ◽  
pp. geochem2021-051
Author(s):  
Sarah Hashmi ◽  
Matthew I. Leybourne ◽  
Stewart Hamilton ◽  
Daniel Layton-Matthews ◽  
M. Beth McClenaghan

A geochemical study over the southwestern part of the South Range of the Sudbury Igneous Complex (SIC) was completed to assess the suitability of surficial media (humus, B-horizon soil and C-horizon soil) for delineating geochemical anomalies associated with Ni-Cu-PGE mineralization. Another objective was to test whether Na pyrophosphate can eliminate the effects of anthropogenic contamination in humus. Results of this study suggest that the natural geochemical signature of humus is strongly overprinted by anthropogenic contamination. Despite no indication of underlying or nearby mineralization, metal concentrations in humus samples by aqua regia collected downwind from smelting operations are higher compared to background, including up to 13 times higher for Pt, 12 times higher for Cu and 9 times higher for Ni. The high anthropogenic background masks the geogenic signal such that it is only apparent in humus samples collected in the vicinity of known Ni-Cu-PGE deposits. Results of this study also demonstrate that anthropogenically-derived atmospheric fallout also influences the upper B-horizon soil; however, lower B-horizon soil (at > 20 cm depth) and C-horizon soil (both developed in till) are not affected. Glacial dispersal from Ni-Cu-PGE mineralization is apparent in C-horizon till samples analyzed in this study. Compared to the background concentrations, the unaffected C-horizon till samples collected immediately down-ice of the low-sulfide, high precious metal (LSHPM) Vermilion Cu-Ni-PGE deposit are enriched over 20 times in Pt (203 ppb), Au (81 ppm) and Cu (963 ppm), and over 30 times in Ni (1283 ppm).Supplementary material:https://doi.org/10.6084/m9.figshare.c.5691080


1999 ◽  
Vol 36 (9) ◽  
pp. 1435-1448 ◽  
Author(s):  
CSJ Shaw ◽  
G M Young ◽  
C M Fedo

Sudbury breccias are commonly attributed to meteoritic impact at about 1.85 Ga in the vicinity of the Sudbury Igneous Complex. In the Whitefish Falls area, about 75 km southwest of Sudbury, similar breccias are widely developed in argillites of the ~2.3 Ga Gowganda Formation. There is abundant evidence of "soft sediment" deformation of the Huronian sediments in the form of complex "fault" contacts, clastic dyke intrusions, and chaotic folding. These movements appear to have been penecontemporaneous with intrusion of highly irregular diabase bodies, which are interpreted as being older than the ~2.2 Ga Nipissing diabase. Complex shapes of diabase bodies and highly irregular contact relationships between diabase and argillites, including intrusions of sediment veins into diabase, support intrusion of the diabase into incompletely consolidated sediments. These data, together with chemical evidence of mixing of diabase, argillite, and other materials in the breccia bodies, suggest that the breccias at Whitefish Falls may have formed as a result of interaction between hot mafic magma and semiconsolidated, water-rich mud, more than 350 Ma prior to formation of the Sudbury Igneous Complex and attendant phenomena that are presumed to be impact related.


Sign in / Sign up

Export Citation Format

Share Document