Soft selective sweeps in fungicide resistance evolution: recurrent mutations without fitness costs in grapevine downy mildew

2017 ◽  
Vol 26 (7) ◽  
pp. 1936-1951 ◽  
Author(s):  
Chloé E. L. Delmas ◽  
Yann Dussert ◽  
Laurent Delière ◽  
Carole Couture ◽  
Isabelle D. Mazet ◽  
...  
2021 ◽  
Vol 9 (1) ◽  
pp. 119
Author(s):  
Federico Massi ◽  
Stefano F. F. Torriani ◽  
Lorenzo Borghi ◽  
Silvia L. Toffolatti

The use of single-site fungicides to control plant pathogens in the agroecosystem can be associated with an increased selection of resistance. The evolution of resistance represents one of the biggest challenges in disease control. In vineyards, frequent applications of fungicides are carried out every season for multiple years. The agronomic risk of developing fungicide resistance is, therefore, high. Plasmopara viticola, the causal agent of grapevine downy mildew, is a high risk pathogen associated with the development of fungicide resistance. P. viticola has developed resistance to most of the fungicide classes used and constitutes one of the most important threats for grapevine production. The goals of this review are to describe fungicide resistance evolution in P. viticola populations and how to conduct proper monitoring activities. Different methods have been developed for phenotyping and genotyping P. viticola for fungicide resistance and the different phases of resistance evolution and life cycles of the pathogen are discussed, to provide a full monitoring toolkit to limit the spread of resistance. A detailed revision of the available tools will help in shaping and harmonizing the monitoring activities between countries and organizations.


2019 ◽  
Vol 11 (3) ◽  
pp. 954-969 ◽  
Author(s):  
Yann Dussert ◽  
Isabelle D Mazet ◽  
Carole Couture ◽  
Jérôme Gouzy ◽  
Marie-Christine Piron ◽  
...  

Abstract Downy mildews are obligate biotrophic oomycete pathogens that cause devastating plant diseases on economically important crops. Plasmopara viticola is the causal agent of grapevine downy mildew, a major disease in vineyards worldwide. We sequenced the genome of Pl. viticola with PacBio long reads and obtained a new 92.94 Mb assembly with high contiguity (359 scaffolds for a N50 of 706.5 kb) due to a better resolution of repeat regions. This assembly presented a high level of gene completeness, recovering 1,592 genes encoding secreted proteins involved in plant–pathogen interactions. Plasmopara viticola had a two-speed genome architecture, with secreted protein-encoding genes preferentially located in gene-sparse, repeat-rich regions and evolving rapidly, as indicated by pairwise dN/dS values. We also used short reads to assemble the genome of Plasmopara muralis, a closely related species infecting grape ivy (Parthenocissus tricuspidata). The lineage-specific proteins identified by comparative genomics analysis included a large proportion of RxLR cytoplasmic effectors and, more generally, genes with high dN/dS values. We identified 270 candidate genes under positive selection, including several genes encoding transporters and components of the RNA machinery potentially involved in host specialization. Finally, the Pl. viticola genome assembly generated here will allow the development of robust population genomics approaches for investigating the mechanisms involved in adaptation to biotic and abiotic selective pressures in this species.


2017 ◽  
Vol 52 (6) ◽  
pp. 426-434 ◽  
Author(s):  
Francislene Angelotti ◽  
Emília Hamada ◽  
Edineide Elisa Magalhães ◽  
Raquel Ghini ◽  
Lucas da Ressureição Garrido ◽  
...  

Abstract: The objective of this work was to evaluate the potential impact of climate change on the occurrence of grapevine downy mildew in Brazil. Seedlings containing four to six leaves were sprayed with a sporangia suspension containing 105 sporangia per milliliter. After spraying, the seedlings were subjected to temperatures of 26, 28, 29.1, 30.4, and 31.8°C for 24 hours. The percentage of diseased leaf area and the latent period were evaluated. Maps of the geographic and temporal distribution of the disease were made considering the monthly average of the mean air temperature and leaf wetness duration for the reference climate or climate normal (1961-1990) and the future climates (2011-2040, 2041-2070, and 2071-2100), considering the A2 and B1 gas emission scenarios, designed by the Intergovernamental Panel on Climate Change (IPCC). Favorability ranges were set and used in logic functions of the geografical information system (GIS) to generate monthly maps for grapevine downy mildew. Rising temperatures interfered with the grapevine downy mildew infections, reduced the disease severity, and increased the latent period. Future climate scenarios indicate a reduction of favorability of downy mildew in Brazil, with variability in the different grape producing regions.


2019 ◽  
Vol 109 (5) ◽  
pp. 787-795 ◽  
Author(s):  
Mathilde Chen ◽  
François Brun ◽  
Marc Raynal ◽  
David Makowski

Grapevine downy mildew (GDM) is a severe disease of grapevines. Because of the lack of reliable information about the dates of GDM symptom onset, many vine growers begin fungicide treatments early in the season. We evaluate the extent to which such preventive treatments are justified. Observational data for 266 untreated sites for the years between 2010 and 2017 were used to estimate the timing of GDM onset on vines and bunches of grapes in South West France (Bordeaux region) through survival analyses. The onset of GDM was not apparent on vines and bunches before early to mid-May, and the rate of GDM symptom appearance was highly variable across years. Depending on the year, 50% of the plots displayed symptoms between mid-May and late June for vines. For several years, our statistical analysis revealed that the proportion of plots with no symptoms was high in early August on vines (27.5 and 43.7% in 2013 and 2016) and on bunches (between 23 and 79% in 2011, 2013, and 2016). We found a significant effect of the amount of rainfall in spring on the date of symptom appearance. These results indicate that preventive fungicide application is unjustified in many vineyards, and that regional disease surveys should be used to adjust fungicide treatment dates according to local characteristics, in particular according to rainfall conditions in spring.


2014 ◽  
Vol 104 (12) ◽  
pp. 1264-1273 ◽  
Author(s):  
Frank van den Bosch ◽  
Neil Paveley ◽  
Femke van den Berg ◽  
Peter Hobbelen ◽  
Richard Oliver

We have reviewed the experimental and modeling evidence on the use of mixtures of fungicides of differing modes of action as a resistance management tactic. The evidence supports the following conclusions. 1. Adding a mixing partner to a fungicide that is at-risk of resistance (without lowering the dose of the at-risk fungicide) reduces the rate of selection for fungicide resistance. This holds for the use of mixing partner fungicides that have either multi-site or single-site modes of action. The resulting predicted increase in the effective life of the at-risk fungicide can be large enough to be of practical relevance. The more effective the mixing partner (due to inherent activity and/or dose), the larger the reduction in selection and the larger the increase in effective life of the at-risk fungicide. 2. Adding a mixing partner while lowering the dose of the at-risk fungicide reduces the selection for fungicide resistance, without compromising effective disease control. The very few studies existing suggest that the reduction in selection is more sensitive to lowering the dose of the at-risk fungicide than to increasing the dose of the mixing partner. 3. Although there are very few studies, the existing evidence suggests that mixing two at-risk fungicides is also a useful resistance management tactic. The aspects that have received too little attention to draw generic conclusions about the effectiveness of fungicide mixtures as resistance management strategies are as follows: (i) the relative effect of the dose of the two mixing partners on selection for fungicide resistance, (ii) the effect of mixing on the effective life of a fungicide (the time from introduction of the fungicide mode of action to the time point where the fungicide can no longer maintain effective disease control), (iii) polygenically determined resistance, (iv) mixtures of two at-risk fungicides, (v) the emergence phase of resistance evolution and the effects of mixtures during this phase, and (vi) monocyclic diseases and nonfoliar diseases. The lack of studies on these aspects of mixture use of fungicides should be a warning against overinterpreting the findings in this review.


Plant Disease ◽  
2016 ◽  
Vol 100 (2) ◽  
pp. 483-489 ◽  
Author(s):  
Laura E. Hayes ◽  
Kathryn E. Sackett ◽  
Nicole P. Anderson ◽  
Michael D. Flowers ◽  
Christopher C. Mundt

Plant pathogens pose a major challenge to maintaining food security in many parts of the world. Where major plant pathogens are fungal, fungicide resistance can often thwart regional control efforts. Zymoseptoria tritici, causal agent of Septoria tritici blotch, is a major fungal pathogen of wheat that has evolved resistance to chemical control products in four fungicide classes in Europe. Compared with Europe, however, fungicide use has been less and studies of fungicide resistance have been infrequent in North American Z. tritici populations. Here, we confirm first reports of Z. tritici fungicide resistance evolution in western Oregon through analysis of the effects of spray applications of propiconazole and an azoxystrobin + propiconazole mixture during a single growing season. Frequencies of strobilurin-resistant isolates, quantified as proportions of G143A mutants, were significantly higher in azoxystrobin-sprayed plots compared with plots with no azoxystrobin treatment at two different locations and were significantly higher in plots of a moderately resistant cultivar than in plots of a susceptible cultivar. Thus, it appears that western Oregon Z. tritici populations have the potential to evolve levels of strobilurin resistance similar to those observed in Europe. Although the concentration of propiconazole required to reduce pathogen growth by 50% values were numerically greater for isolates collected from plots receiving propiconazole than in control plots, this effect was not significant (P > 0.05).


Proceedings ◽  
2019 ◽  
Vol 29 (1) ◽  
pp. 34
Author(s):  
Camelia Ungureanu ◽  
Liliana Cristina Soare ◽  
Diana Vizitiu ◽  
Mirela Calinescu ◽  
Irina Fierascu ◽  
...  

In order to test some biofungicides, the isolation of Plasmopara viticola was carried out.Plasmopara viticola is a fungus that causes the grapevine downy mildew disease [...]


2020 ◽  
Vol 30 (20) ◽  
pp. 3897-3907.e4 ◽  
Author(s):  
Yann Dussert ◽  
Ludovic Legrand ◽  
Isabelle D. Mazet ◽  
Carole Couture ◽  
Marie-Christine Piron ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document