scholarly journals Phenotypic sexual dimorphism is associated with genomic signatures of resolved sexual conflict

2019 ◽  
Vol 28 (11) ◽  
pp. 2860-2871 ◽  
Author(s):  
Alison E. Wright ◽  
Thea F. Rogers ◽  
Matteo Fumagalli ◽  
Christopher R. Cooney ◽  
Judith E. Mank
BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Basabi Bagchi ◽  
Quentin Corbel ◽  
Imroze Khan ◽  
Ellen Payne ◽  
Devshuvam Banerji ◽  
...  

Abstract Background Sexual dimorphism in immunity is believed to reflect sex differences in reproductive strategies and trade-offs between competing life history demands. Sexual selection can have major effects on mating rates and sex-specific costs of mating and may thereby influence sex differences in immunity as well as associated host–pathogen dynamics. Yet, experimental evidence linking the mating system to evolved sexual dimorphism in immunity are scarce and the direct effects of mating rate on immunity are not well established. Here, we use transcriptomic analyses, experimental evolution and phylogenetic comparative methods to study the association between the mating system and sexual dimorphism in immunity in seed beetles, where mating causes internal injuries in females. Results We demonstrate that female phenoloxidase (PO) activity, involved in wound healing and defence against parasitic infections, is elevated relative to males. This difference is accompanied by concomitant sex differences in the expression of genes in the prophenoloxidase activating cascade. We document substantial phenotypic plasticity in female PO activity in response to mating and show that experimental evolution under enforced monogamy (resulting in low remating rates and reduced sexual conflict relative to natural polygamy) rapidly decreases female (but not male) PO activity. Moreover, monogamous females had evolved increased tolerance to bacterial infection unrelated to mating, implying that female responses to costly mating may trade off with other aspects of immune defence, an hypothesis which broadly accords with the documented sex differences in gene expression. Finally, female (but not male) PO activity shows correlated evolution with the perceived harmfulness of male genitalia across 12 species of seed beetles, suggesting that sexual conflict has a significant influence on sexual dimorphisms in immunity in this group of insects. Conclusions Our study provides insights into the links between sexual conflict and sexual dimorphism in immunity and suggests that selection pressures moulded by mating interactions can lead to a sex-specific mosaic of immune responses with important implications for host–pathogen dynamics in sexually reproducing organisms.


2006 ◽  
Vol 361 (1466) ◽  
pp. 375-386 ◽  
Author(s):  
Göran Arnqvist

Much of the literature on male–female coevolution concerns the processes by which male traits and female preferences for these can coevolve and be maintained by selection. There has been less explicit focus on the origin of male traits and female preferences. Here, I argue that it is important to distinguish origin from subsequent coevolution and that insights into the origin can help us appreciate the relative roles of various coevolutionary processes for the evolution of diversity in sexual dimorphism. I delineate four distinct scenarios for the origin of male traits and female preferences that build on past contributions, two of which are based on pre-existing variation in quality indicators among males and two on exploitation of pre-existing sensory biases among females. Recent empirical research, and theoretical models, suggest that origin by sensory exploitation has been widespread. I argue that this points to a key, but perhaps transient, role for sexually antagonistic coevolution (SAC) in the subsequent evolutionary elaboration of sexual traits, because (i) sensory exploitation is often likely to be initially costly for individuals of the exploited sex and (ii) the subsequent evolution of resistance to sensory exploitation should often be associated with costs due to selective constraints. A review of a few case studies is used to illustrate these points. Empirical data directly relevant to the costs of being sensory exploited and the costs of evolving resistance is largely lacking, and I stress that such data would help determining the general importance of sexual conflict and SAC for the evolution of sexual dimorphism.


2017 ◽  
Vol 108 (7) ◽  
pp. 780-790 ◽  
Author(s):  
Katja R Kasimatis ◽  
Thomas C Nelson ◽  
Patrick C Phillips

2015 ◽  
Vol 84 (4) ◽  
pp. 305-315 ◽  
Author(s):  
Wen Zhong ◽  
Zi-Yi Qi ◽  
Bao-Zhen Hua

Firm coupling of genitalia is critical for copulation in most groups of insects. To counter female resistance that usually breaks off genital connection, male scorpionflies (Mecoptera: Panorpidae) usually provide nuptial gifts for the female and seize their mates with grasping devices. The notal organ, a modified clamp on tergum III of male scorpionflies, plays a significant role in seizing the female wings and helping maintain mating position during copulation. The mating behaviour remains unknown for the scorpionfly Furcatopanorpa longihypovalva (Hua and Cai, 2009) whose male lacks a notal organ. In this paper, we first attempt to study the mating behaviour of F. longihypovalva. The results show that the male provides liquid salivary secretion through a mouth-to-mouth mode for the female, and maintains copulation mainly by continuous provision of salivary secretion rather than by seizing the female with grasping devices. Thus the male copulates with the female in an atypical O-shaped position, with only their mouthparts and genitalia connected to each other. The salivary glands exhibit remarkable sexual dimorphism: short and bifurcated in the female, but well-developed and multi-furcated in the male. The extremely developed salivary glands of the male lay a structural foundation for the male to continuously provide liquid salivary secretion, and to help the male to mediate female resistance, being likely to serve as a compensation to his absence of the notal organ. We also investigated the functional morphology and copulatory mechanism of the male and female genitalia. The evolution of the atypical mating pattern of F. longihypovalva is putatively discussed as an adaptation in the context of sexual conflict.


2018 ◽  
Vol 373 (1757) ◽  
pp. 20170419 ◽  
Author(s):  
Anna Runemark ◽  
Fabrice Eroukhmanoff ◽  
Angela Nava-Bolaños ◽  
Jo S. Hermansen ◽  
Joana I. Meier

While gene flow can reduce the potential for local adaptation, hybridization may conversely provide genetic variation that increases the potential for local adaptation. Hybridization may also affect adaptation through altering sexual dimorphism and sexual conflict, but this remains largely unstudied. Here, we discuss how hybridization may affect sexual dimorphism and conflict due to differential effects of hybridization on males and females, and then how this, in turn, may affect local adaptation. First, in species with heterochromatic sexes, the lower viability of the heterogametic sex in hybrids could shift the balance in sexual conflict. Second, sex-specific inheritance of the mitochondrial genome in hybrids may lead to cytonuclear mismatches, for example, in the form of ‘mother's curse’, with potential consequences for sex ratio and sex-specific expression. Third, sex-biased introgression and recombination may lead to sex-specific consequences of hybridization. Fourth, transgressive segregation of sexually antagonistic alleles could increase sexual dimorphism in hybrid populations. Sexual dimorphism can reduce sexual conflict and enhance intersexual niche partitioning, increasing the fitness of hybrids. Adaptive introgression of alleles reducing sexual conflict or enhancing intersexual niche partitioning may facilitate local adaptation, and could favour the colonization of novel habitats. We review these consequences of hybridization on sex differences and local adaptation, and discuss how their prevalence and importance could be tested empirically. This article is part of the theme issue ‘Linking local adaptation with the evolution of sex differences'.


2019 ◽  
Vol 3 (12) ◽  
pp. 1725-1730 ◽  
Author(s):  
Ahmed Sayadi ◽  
Alvaro Martinez Barrio ◽  
Elina Immonen ◽  
Jacques Dainat ◽  
David Berger ◽  
...  

AbstractGenes with sex-biased expression show a number of unique properties and this has been seen as evidence for conflicting selection pressures in males and females, forming a genetic ‘tug-of-war’ between the sexes. However, we lack studies of taxa where an understanding of conflicting phenotypic selection in the sexes has been linked with studies of genomic signatures of sexual conflict. Here, we provide such a link. We used an insect where sexual conflict is unusually well understood, the seed beetle Callosobruchus maculatus, to test for molecular genetic signals of sexual conflict across genes with varying degrees of sex-bias in expression. We sequenced, assembled and annotated its genome and performed population resequencing of three divergent populations. Sex-biased genes showed increased levels of genetic diversity and bore a remarkably clear footprint of relaxed purifying selection. Yet, segregating genetic variation was also affected by balancing selection in weakly female-biased genes, while male-biased genes showed signs of overall purifying selection. Female-biased genes contributed disproportionally to shared polymorphism across populations, while male-biased genes, male seminal fluid protein genes and sex-linked genes did not. Genes showing genomic signatures consistent with sexual conflict generally matched life-history phenotypes known to experience sexually antagonistic selection in this species. Our results highlight metabolic and reproductive processes, confirming the key role of general life-history traits in sexual conflict.


2012 ◽  
Vol 367 (1600) ◽  
pp. 2357-2375 ◽  
Author(s):  
Richard H. Baker ◽  
Apurva Narechania ◽  
Philip M. Johns ◽  
Gerald S. Wilkinson

Gene duplication provides an essential source of novel genetic material to facilitate rapid morphological evolution. Traits involved in reproduction and sexual dimorphism represent some of the fastest evolving traits in nature, and gene duplication is intricately involved in the origin and evolution of these traits. Here, we review genomic research on stalk-eyed flies (Diopsidae) that has been used to examine the extent of gene duplication and its role in the genetic architecture of sexual dimorphism. Stalk-eyed flies are remarkable because of the elongation of the head into long stalks, with the eyes and antenna laterally displaced at the ends of these stalks. Many species are strongly sexually dimorphic for eyespan, and these flies have become a model system for studying sexual selection. Using both expressed sequence tag and next-generation sequencing, we have established an extensive database of gene expression in the developing eye-antennal imaginal disc, the adult head and testes. Duplicated genes exhibit narrower expression patterns than non-duplicated genes, and the testes, in particular, provide an abundant source of gene duplication. Within somatic tissue, duplicated genes are more likely to be differentially expressed between the sexes, suggesting gene duplication may provide a mechanism for resolving sexual conflict.


Sign in / Sign up

Export Citation Format

Share Document