scholarly journals Hybridization, sex-specific genomic architecture and local adaptation

2018 ◽  
Vol 373 (1757) ◽  
pp. 20170419 ◽  
Author(s):  
Anna Runemark ◽  
Fabrice Eroukhmanoff ◽  
Angela Nava-Bolaños ◽  
Jo S. Hermansen ◽  
Joana I. Meier

While gene flow can reduce the potential for local adaptation, hybridization may conversely provide genetic variation that increases the potential for local adaptation. Hybridization may also affect adaptation through altering sexual dimorphism and sexual conflict, but this remains largely unstudied. Here, we discuss how hybridization may affect sexual dimorphism and conflict due to differential effects of hybridization on males and females, and then how this, in turn, may affect local adaptation. First, in species with heterochromatic sexes, the lower viability of the heterogametic sex in hybrids could shift the balance in sexual conflict. Second, sex-specific inheritance of the mitochondrial genome in hybrids may lead to cytonuclear mismatches, for example, in the form of ‘mother's curse’, with potential consequences for sex ratio and sex-specific expression. Third, sex-biased introgression and recombination may lead to sex-specific consequences of hybridization. Fourth, transgressive segregation of sexually antagonistic alleles could increase sexual dimorphism in hybrid populations. Sexual dimorphism can reduce sexual conflict and enhance intersexual niche partitioning, increasing the fitness of hybrids. Adaptive introgression of alleles reducing sexual conflict or enhancing intersexual niche partitioning may facilitate local adaptation, and could favour the colonization of novel habitats. We review these consequences of hybridization on sex differences and local adaptation, and discuss how their prevalence and importance could be tested empirically. This article is part of the theme issue ‘Linking local adaptation with the evolution of sex differences'.

2018 ◽  
Author(s):  
Anna Runemark ◽  
Fabrice Eroukhmanoff ◽  
Angela Nava-Bolaños ◽  
Jo S Hermansen ◽  
Joana I Meier

AbstractWhile gene flow can reduce the potential for local adaptation, hybridization may conversely provide genetic variation that increases the potential for local adaptation. Hybridization may also affect adaptation through altering sexual dimorphism and sexual conflict, but this remains largely unstudied. Here, we discuss how hybridization may affect sexual dimorphism and conflict due to differential effects of hybridization on males and females, and then how this in turn may affect local adaptation. First, the lower viability of the heterogametic sex in hybrids could shift the balance in sexual conflict. Second, sex-specific inheritance of the mitochondrial genome in hybrids may lead to cyto-nuclear mismatches, for example in the form of “mother’s curse”, with potential consequences for sex-ratio and sex specific expression. Third, transgressive segregation of sexually antagonistic alleles could lead to greater sexual dimorphism in hybrid populations. These mechanisms can reduce sexual conflict and enhance intersexual niche partitioning, increasing the fitness of hybrids. Adaptive introgression of alleles reducing sexual conflict or enhancing intersexual niche partitioning may facilitate local adaptation, and could favour the colonization of novel habitats. We review these consequences of hybridization on sex differences and local adaptation, and discuss how their prevalence and importance could be tested empirically.


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Basabi Bagchi ◽  
Quentin Corbel ◽  
Imroze Khan ◽  
Ellen Payne ◽  
Devshuvam Banerji ◽  
...  

Abstract Background Sexual dimorphism in immunity is believed to reflect sex differences in reproductive strategies and trade-offs between competing life history demands. Sexual selection can have major effects on mating rates and sex-specific costs of mating and may thereby influence sex differences in immunity as well as associated host–pathogen dynamics. Yet, experimental evidence linking the mating system to evolved sexual dimorphism in immunity are scarce and the direct effects of mating rate on immunity are not well established. Here, we use transcriptomic analyses, experimental evolution and phylogenetic comparative methods to study the association between the mating system and sexual dimorphism in immunity in seed beetles, where mating causes internal injuries in females. Results We demonstrate that female phenoloxidase (PO) activity, involved in wound healing and defence against parasitic infections, is elevated relative to males. This difference is accompanied by concomitant sex differences in the expression of genes in the prophenoloxidase activating cascade. We document substantial phenotypic plasticity in female PO activity in response to mating and show that experimental evolution under enforced monogamy (resulting in low remating rates and reduced sexual conflict relative to natural polygamy) rapidly decreases female (but not male) PO activity. Moreover, monogamous females had evolved increased tolerance to bacterial infection unrelated to mating, implying that female responses to costly mating may trade off with other aspects of immune defence, an hypothesis which broadly accords with the documented sex differences in gene expression. Finally, female (but not male) PO activity shows correlated evolution with the perceived harmfulness of male genitalia across 12 species of seed beetles, suggesting that sexual conflict has a significant influence on sexual dimorphisms in immunity in this group of insects. Conclusions Our study provides insights into the links between sexual conflict and sexual dimorphism in immunity and suggests that selection pressures moulded by mating interactions can lead to a sex-specific mosaic of immune responses with important implications for host–pathogen dynamics in sexually reproducing organisms.


2018 ◽  
Vol 373 (1757) ◽  
pp. 20170418 ◽  
Author(s):  
Jennifer C. Perry ◽  
Locke Rowe

Sexual conflict can lead to rapid and continuous coevolution between females and males, without any inputs from varying ecology. Yet both the degree of conflict and selection on antagonistic traits are known to be sensitive to local ecological conditions. This leads to the longstanding question: to what extent does variation in ecological context drive sexually antagonistic coevolution? In water striders, there is much information about the impacts of ecological factors on conflict, and about patterns of antagonistic coevolution. However, the connection between the two is poorly understood. Here, we first review the multiple ways in which ecological context might affect the coevolutionary trajectory of the sexes. We then review ecological and coevolutionary patterns in water striders, and connections between them, in light of theory and new data. Our analysis suggests that ecological variation does impact observed patterns of antagonistic coevolution, but highlights significant uncertainty due to the multiple pathways by which ecological factors can influence conflict and its evolutionary outcome. To the extent that water striders are a reasonable reflection of other systems, this observation serves as both an opportunity and a warning: there is much to learn, but gaining insight may be a daunting process in many systems. This article is part of the theme issue ‘Linking local adaptation with the evolution of sex differences'.


2020 ◽  
Author(s):  
Basabi Bagchi ◽  
Quentin Corbel ◽  
Imroze Khan ◽  
Ellen Payne ◽  
Devshuvam Banerji ◽  
...  

AbstractSexual dimorphism in immunity is believed to reflect sex-differences in trade-offs between competing life history demands. Sexual selection can have major effects on mating rates and sex-specific costs of mating and may thereby influence sex-differences in immunity as well as associated host-pathogen dynamics. Yet, experimental data linking the mating system to evolved sexual dimorphism in immunity are scarce and the direct effects of mating rate on immunity are not well established. Here, we use transcriptomic analyses, experimental evolution and phylogenetic comparative methods to study the association between the mating system and sexual dimorphism in immunity in seed beetles, where mating causes internal injuries in females. We demonstrate that female phenoloxidase (PO) activity, involved in wound healing and defence against parasitic infections, is elevated relative to males as a result of sex-biased expression of genes in the proPO activating cascade. We document substantial phenotypic plasticity in female PO activity in response to mating and show that experimental evolution under enforced monogamy (relative to natural polygamy) rapidly decreases female (but not male) PO activity. The evolution of decreased PO in monogamous females was accompanied by increased tolerance to bacterial infection unrelated to mating. This implies that female responses to costly mating may trade off with other aspects of immune defence. Finally, female (but not male) PO activity show correlated evolution with the perceived harmfulness of male genitalia across 12 species of seed beetles, suggesting that sexual conflict has a significant influence on sexual dimorphisms in immunity in this group of insects. Our results thus provide a proximate and ultimate understanding of the links between sexual selection and sexual dimorphism in immunity.


2021 ◽  
Vol 22 (9) ◽  
pp. 4620
Author(s):  
Holly J. Woodward ◽  
Dongxing Zhu ◽  
Patrick W. F. Hadoke ◽  
Victoria E. MacRae

Sex differences in cardiovascular disease (CVD), including aortic stenosis, atherosclerosis and cardiovascular calcification, are well documented. High levels of testosterone, the primary male sex hormone, are associated with increased risk of cardiovascular calcification, whilst estrogen, the primary female sex hormone, is considered cardioprotective. Current understanding of sexual dimorphism in cardiovascular calcification is still very limited. This review assesses the evidence that the actions of sex hormones influence the development of cardiovascular calcification. We address the current question of whether sex hormones could play a role in the sexual dimorphism seen in cardiovascular calcification, by discussing potential mechanisms of actions of sex hormones and evidence in pre-clinical research. More advanced investigations and understanding of sex hormones in calcification could provide a better translational outcome for those suffering with cardiovascular calcification.


2021 ◽  
Vol 22 (15) ◽  
pp. 8111
Author(s):  
Kuang-Hsu Lien ◽  
Chao-Hui Yang

The triad of noise-generated, drug-induced, and age-related hearing loss is the major cause of acquired sensorineural hearing loss (ASNHL) in modern society. Although these three forms of hearing loss display similar underlying mechanisms, detailed studies have revealed the presence of sex differences in the auditory system both in human and animal models of ASNHL. However, the sexual dimorphism of hearing varies among noise-induced hearing loss (NIHL), ototoxicity, and age-related hearing loss (ARHL). Importantly, estrogen may play an essential role in modulating the pathophysiological mechanisms in the cochlea and several reports have shown that the effects of hormone replacement therapy on hearing loss are complex. This review will summarize the clinical features of sex differences in ASNHL, compare the animal investigations of cochlear sexual dimorphism in response to the three insults, and address how estrogen affects the auditory organ at molecular levels.


2012 ◽  
Vol 60 (2) ◽  
pp. 101 ◽  
Author(s):  
Thomas E. White ◽  
Joseph Macedonia ◽  
Debra Birch ◽  
Judith Dawes ◽  
Darrell J. Kemp

Structurally generated colours are at least as commonplace and varied components of animal signals as pigment colours, yet we know far less about the former, both in terms of the patterns and phenotypic variation and of their underlying correlates and causes. Many butterflies exhibit bright and iridescent colour signals that arise from a characteristic ‘ridge-lamellar’ scale surface nanoarchitecture. Although there are multiple axes of functional variation in these traits, few have been investigated. Here we present evidence that sexual dimorphism in the expression of a sexually homologous ridge-lamellar trait (iridescent ultraviolet) is mediated by sex differences in the density of lamellar-bearing scale ridges. This trait – ridge density – has also been causally related to iridescent signal variation in other coliadines (e.g. C. eurytheme), which suggests that it may offer a common basis to both intra- and intersexual differences in ultraviolet wing reflectance among these butterflies.


2021 ◽  
Vol 135 (24) ◽  
pp. 2691-2708
Author(s):  
Simon T. Bond ◽  
Anna C. Calkin ◽  
Brian G. Drew

Abstract The escalating prevalence of individuals becoming overweight and obese is a rapidly rising global health problem, placing an enormous burden on health and economic systems worldwide. Whilst obesity has well described lifestyle drivers, there is also a significant and poorly understood component that is regulated by genetics. Furthermore, there is clear evidence for sexual dimorphism in obesity, where overall risk, degree, subtype and potential complications arising from obesity all differ between males and females. The molecular mechanisms that dictate these sex differences remain mostly uncharacterised. Many studies have demonstrated that this dimorphism is unable to be solely explained by changes in hormones and their nuclear receptors alone, and instead manifests from coordinated and highly regulated gene networks, both during development and throughout life. As we acquire more knowledge in this area from approaches such as large-scale genomic association studies, the more we appreciate the true complexity and heterogeneity of obesity. Nevertheless, over the past two decades, researchers have made enormous progress in this field, and some consistent and robust mechanisms continue to be established. In this review, we will discuss some of the proposed mechanisms underlying sexual dimorphism in obesity, and discuss some of the key regulators that influence this phenomenon.


2014 ◽  
Vol 281 (1790) ◽  
pp. 20140333 ◽  
Author(s):  
Crystal M. Vincent ◽  
Darryl T. Gwynne

Sex differences in immunity are often observed, with males generally having a weaker immune system than females. However, recent data in a sex-role-reversed species in which females compete to mate with males suggest that sexually competitive females have a weaker immune response. These findings support the hypothesis that sexual dimorphism in immunity has evolved in response to sex-specific fitness returns of investment in traits such as parental investment and longevity, but the scarcity of data in sex-reversed species prevents us from drawing general conclusions. Using an insect species in which males make a large but variable parental investment in their offspring, we use two indicators of immunocompetence to test the hypothesis that sex-biased immunity is determined by differences in parental investment. We found that when the value of paternal investment was experimentally increased, male immune investment became relatively greater than that of females. Thus, in this system, in which the direction of sexual competition is plastic, the direction of sex-biased immunity is also plastic and appears to track relative parental investment.


Sign in / Sign up

Export Citation Format

Share Document