Rate‐dependent fracture modeling of bituminous media using nonlinear viscoelastic cohesive zone with Gaussian damage function

Author(s):  
Yong‐Rak Kim ◽  
Jamilla E. S. L. Teixeira ◽  
Santosh R. Kommidi ◽  
Dallas N. Little ◽  
Francisco T. S. Aragao ◽  
...  
1993 ◽  
Vol 115 (3) ◽  
pp. 252-261 ◽  
Author(s):  
Leif-Olof Fager ◽  
J. L. Bassani

A cohesive zone model of the Dugdale-Barenblatt type is used to investigate crack growth under small-scale-creep/damage conditions. The material inside the cohesive zone is described by a power-law viscous overstress relation modified by a one-parameter damage function of the Kachanov type. The stress and displacement profiles in the cohesive zone and the velocity dependence of the fracture toughness are investigated. It is seen that the fracture toughness increases rapidly with the velocity and asymptotically approaches the case that neglects damage.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 749 ◽  
Author(s):  
Dong Li ◽  
Demin Wei

In this paper, rate-dependent cohesive zone model was established to numerical simulate the fracture process of soda-lime glass under impact loading. Soda-lime glass is widely used in architecture and automobile industry due to its transparency. To improve the accuracy of fracture simulation of soda-lime glass under impact loading, strain rate effect was taken into consideration and a rate-dependent cohesive zone model was established. Tensile-shear mixed mode fracture was also taken account. The rate-dependent cohesive zone model was implemented in the commercial finite element code ABAQUS/Explicit with the user subroutine VUMAT. The fracture behavior of a monolithic glass plate impacted by a hemispherical impactor was simulated. The simulation results demonstrated that the rate-dependent cohesive zone model is more suitable to describe the impact failure characteristics of a monolithic glass plate, compared to cohesive zone model without consideration of strain rate. Moreover, the effect of the strain rate sensitivity coefficient C, the mesh size of glass plate and the impact velocity on the fracture characteristics were studied.


2005 ◽  
Vol 128 (1) ◽  
pp. 11-17 ◽  
Author(s):  
Samit Roy ◽  
Yong Wang ◽  
Soojae Park ◽  
Kenneth M. Liechti

The objective of this paper is to model the synergistic bond-degradation mechanisms that may occur at the interface between a fiber-reinforced polymer (FRP) that is adhesively bonded to a substrate and subjected to elevated temperature and humidity. For this purpose, a two-dimensional cohesive-layer constitutive model with a prescribed traction-separation law is constructed from fundamental principles of continuum mechanics and thermodynamics, taking into account strain-dependent, non-Fickian hygrothermal effects as well as diffusion-induced degradation in the cohesive layer. In the interest of solution tractability, a simplified approach is employed where the rate-dependent behavior in the cohesive layer is implemented through the characterization of rate dependence of the maximum stresses and maximum strains in the cohesive layer, rather than through the use of convolution integrals in the free-energy definition. The remainder of the polymeric adhesive outside the cohesive layer is modeled as a nonlinear viscoelastic continuum with time-dependent constitutive behavior. The influence of temperature and moisture concentration on the work-of-separation and on crack growth is derived from first principles. The model is implemented in a test-bed finite element code. Results predicted by the computational model are benchmarked through comparison to experimental data from mixed-mode fracture experiments performed using a moving wedge test.


2005 ◽  
Author(s):  
Dhaval P. Makhecha ◽  
Rakesh K. Kapania ◽  
Eric R. Johnson ◽  
David A. Dillard ◽  
George C. Jacob ◽  
...  

This paper presents the development and numerical implementation of a rate dependent fracture model of an epoxy adhesive. Previous mode I fracture tests conducted under quasistatic, displacement controlled loading of an aluminum double cantilever beam (DCB) bonded with the epoxy exhibited unstable crack growth in the adhesive. Results from mode I fracture tests of compact tension specimens made from bulk adhesive at increasing cross head opening speeds are reported in this paper. The compact tension tests results showed a decreasing critical strain energy release rate with increasing cross head speed, with the critical energy release rate at 1 m/s cross head speed equal to about 20% of its quasi-static value. Two rate dependent cohesive zone models are formulated based on the compact tension test data. A cohesive de-cohesive relationship was postulated between the tractions acting across the crack faces and the opening displacement and opening velocity. These rate dependent cohesive zone models are implemented in a interface finite element to model discrete crack growth in the adhesive. The reaction force history from simulation of the DCB test is in good agreement with the test data using only the rate dependent interface element to model the adhesive.


2018 ◽  
Vol 774 ◽  
pp. 84-89 ◽  
Author(s):  
Roman Vodička ◽  
Katarína Krajníková

A model for numerical analysis of interface damage which leads to interface crack initiationand propagation in multi-domain structures under cyclic loading is considered. Modelling of damagetakes into account various relations between interface stresses and displacement gaps providing theresponse of a cohesive zone model, additionally equipped by a kind of viscosity associated to theevolution of the interface damage. Together with repeating loading-unloading conditions, it makesthis damage process to have a fatigue-like character, where the crack appears for smaller magnitudeof the cyclic load than for pure uploading.


Sign in / Sign up

Export Citation Format

Share Document