A Conserved and Seemingly Redundant Escherichia coli Biotin Biosynthesis Gene Expressed Only During Anaerobic Growth

2021 ◽  
Author(s):  
Xuejiao Song ◽  
John E. Cronan
2004 ◽  
Vol 186 (1) ◽  
pp. 192-199 ◽  
Author(s):  
Elizabeth Yohannes ◽  
D. Michael Barnhart ◽  
Joan L. Slonczewski

ABSTRACT During aerobic growth of Escherichia coli, expression of catabolic enzymes and envelope and periplasmic proteins is regulated by pH. Additional modes of pH regulation were revealed under anaerobiosis. E. coli K-12 strain W3110 was cultured anaerobically in broth medium buffered at pH 5.5 or 8.5 for protein identification on proteomic two-dimensional gels. A total of 32 proteins from anaerobic cultures show pH-dependent expression, and only four of these proteins (DsbA, TnaA, GatY, and HdeA) showed pH regulation in aerated cultures. The levels of 19 proteins were elevated at the high pH; these proteins included metabolic enzymes (DhaKLM, GapA, TnaA, HisC, and HisD), periplasmic proteins (ProX, OppA, DegQ, MalB, and MglB), and stress proteins (DsbA, Tig, and UspA). High-pH induction of the glycolytic enzymes DhaKLM and GapA suggested that there was increased fermentation to acids, which helped neutralize alkalinity. Reporter lac fusion constructs showed base induction of sdaA encoding serine deaminase under anaerobiosis; in addition, the glutamate decarboxylase genes gadA and gadB were induced at the high pH anaerobically but not with aeration. This result is consistent with the hypothesis that there is a connection between the gad system and GabT metabolism of 4-aminobutanoate. On the other hand, 13 other proteins were induced by acid; these proteins included metabolic enzymes (GatY and AckA), periplasmic proteins (TolC, HdeA, and OmpA), and redox enzymes (GuaB, HmpA, and Lpd). The acid induction of NikA (nickel transporter) is of interest because E. coli requires nickel for anaerobic fermentation. The position of the NikA spot coincided with the position of a small unidentified spot whose induction in aerobic cultures was reported previously; thus, NikA appeared to be induced slightly by acid during aeration but showed stronger induction under anaerobic conditions. Overall, anaerobic growth revealed several more pH-regulated proteins; in particular, anaerobiosis enabled induction of several additional catabolic enzymes and sugar transporters at the high pH, at which production of fermentation acids may be advantageous for the cell.


2019 ◽  
Vol 87 (9) ◽  
Author(s):  
Takeshi Shimizu ◽  
Akio Matsumoto ◽  
Masatoshi Noda

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) has at least three enzymes, NorV, Hmp, and Hcp, that act independently to lower the toxicity of nitric oxide (NO), a potent antimicrobial molecule. This study aimed to reveal the cooperative roles of these defensive enzymes in EHEC against nitrosative stress. Under anaerobic conditions, combined deletion of all three enzymes significantly increased the NO sensitivity of EHEC determined by the growth at late stationary phase; however, the expression of norV restored the NO resistance of EHEC. On the other hand, the growth of Δhmp mutant EHEC was inhibited after early stationary phase, indicating that NorV and Hmp play a cooperative role in anaerobic growth. Under microaerobic conditions, the growth of Δhmp mutant EHEC was inhibited by NO, indicating that Hmp is the enzyme that protects cells from NO stress under microaerobic conditions. When EHEC cells were exposed to a lower concentration of NO, the NO level in bacterial cells of Δhcp mutant EHEC was higher than those of the other EHEC mutants, suggesting that Hcp is effective at regulating NO levels only at a low concentration. These findings of a low level of NO in bacterial cells with hcp indicate that the NO consumption activity of Hcp was suppressed by Hmp at a low range of NO concentrations. Taken together, these results show that the cooperative effects of NO-metabolizing enzymes are regulated by the range of NO concentrations to which the EHEC cells are exposed.


Author(s):  
Magali Roger ◽  
Thomas C. P. Reed ◽  
Frank Sargent

Escherichia coli is gram-negative bacterium that is a workhorse for biotechnology. The organism naturally performs a mixed-acid fermentation under anaerobic conditions where it synthesises formate hydrogenlyase (FHL-1). The physiological role of the enzyme is the disproportionation of formate in to H 2 and CO 2 . However, the enzyme has been observed to catalyse hydrogenation of CO 2 given the correct conditions, and so has possibilities in bio-based carbon capture and storage if it can be harnessed as a hydrogen-dependent CO 2 -reductase (HDCR). In this study, an E. coli host strain was engineered for the continuous production of formic acid from H 2 and CO 2 during bacterial growth in a pressurised batch bioreactor. Incorporation of tungsten, in place of molybdenum, in FHL-1 helped to impose a degree of catalytic bias on the enzyme. This work demonstrates that it is possible to couple cell growth to simultaneous, unidirectional formate production from carbon dioxide and develops a process for growth under pressurised gases. IMPORTANCE Greenhouse gas emissions, including waste carbon dioxide, are contributing to global climate change. A basket of solutions is needed to steadily reduce emissions, and one approach is bio-based carbon capture and storage. Here we present out latest work on harnessing a novel biological solution for carbon capture. The Escherichia coli formate hydrogenlyase (FHL-1) was engineered to be constitutively expressed. Anaerobic growth under pressurised H 2 and CO 2 gases was established and aqueous formic acid was produced as a result. Incorporation of tungsten in to the enzyme in place of molybdenum proved useful in poising FHL-1 as a hydrogen-dependent CO 2 reductase (HDCR).


1988 ◽  
Vol 34 (6) ◽  
pp. 822-824 ◽  
Author(s):  
Holly E. Richter ◽  
Jacek Switala ◽  
Peter C. Loewen

The addition of ascorbate to aerobically growing cultures of Escherichia coli B caused only a short pause in growth and no subsequent change in the rate or extent of growth. The effect of ascorbate on oxygen uptake varied from inhibition in minimal medium to stimulation in rich medium. Cyanide-resistant growth and oxygen uptake were stimulated by ascorbate. Both the rate and extent of anaerobic growth were stimulated in proportion to the amount of ascorbate added when fumarate was the terminal electron acceptor. Ascorbate had no effect on any aspect of anaerobic growth in the absence of a terminal electron acceptor or in the presence of nitrate.


2011 ◽  
Vol 77 (14) ◽  
pp. 4894-4904 ◽  
Author(s):  
Cong T. Trinh ◽  
Johnny Li ◽  
Harvey W. Blanch ◽  
Douglas S. Clark

ABSTRACTFermentation enables the production of reduced metabolites, such as the biofuels ethanol and butanol, from fermentable sugars. This work demonstrates a general approach for designing and constructing a production host that uses a heterologous pathway as an obligately fermentative pathway to produce reduced metabolites, specifically, the biofuel isobutanol. Elementary mode analysis was applied to design anEscherichia colistrain optimized for isobutanol production under strictly anaerobic conditions. The central metabolism ofE. coliwas decomposed into 38,219 functional, unique, and elementary modes (EMs). The model predictions revealed that during anaerobic growthE. colicannot produce isobutanol as the sole fermentative product. By deleting 7 chromosomal genes, the total 38,219 EMs were constrained to 12 EMs, 6 of which can produce high yields of isobutanol in a range from 0.29 to 0.41 g isobutanol/g glucose under anaerobic conditions. The remaining 6 EMs rely primarily on the pyruvate dehydrogenase enzyme complex (PDHC) and are typically inhibited under anaerobic conditions. The redesignedE. colistrain was constrained to employ the anaerobic isobutanol pathways through deletion of 7 chromosomal genes, addition of 2 heterologous genes, and overexpression of 5 genes. Here we present the design, construction, and characterization of an isobutanol-producingE. colistrain to illustrate the approach. The model predictions are evaluated in relation to experimental data and strategies proposed to improve anaerobic isobutanol production. We also show that the endogenous alcohol/aldehyde dehydrogenase AdhE is the key enzyme responsible for the production of isobutanol and ethanol under anaerobic conditions. The glycolytic flux can be controlled to regulate the ratio of isobutanol to ethanol production.


2020 ◽  
Vol 8 (6) ◽  
pp. 920 ◽  
Author(s):  
Daan M. van Vliet ◽  
Yuemei Lin ◽  
Nicole J. Bale ◽  
Michel Koenen ◽  
Laura Villanueva ◽  
...  

Recently, we isolated two marine strains, F1T and F21T, which together with Kiritimatiella glycovorans L21-Fru-ABT are the only pure cultures of the class Kiritimatiellae within the phylum Verrucomicrobiota. Here, we present an in-depth genome-guided characterization of both isolates with emphasis on their exopolysaccharide synthesis. The strains only grew fermentatively on simple carbohydrates and sulfated polysaccharides. Strains F1T, F21T and K. glycovorans reduced elemental sulfur, ferric citrate and anthraquinone-2,6-disulfonate during anaerobic growth on sugars. Both strains produced exopolysaccharides during stationary phase, probably with intracellularly stored glycogen as energy and carbon source. Exopolysaccharides included N-sulfated polysaccharides probably containing hexosamines and thus resembling glycosaminoglycans. This implies that the isolates can both degrade and produce sulfated polysaccharides. Both strains encoded an unprecedently high number of glycoside hydrolase genes (422 and 388, respectively), including prevalent alpha-L-fucosidase genes, which may be necessary for degrading complex sulfated polysaccharides such as fucoidan. Strain F21T encoded three putative glycosaminoglycan sulfotransferases and a putative sulfate glycosaminoglycan biosynthesis gene cluster. Based on phylogenetic and chemotaxonomic analyses, we propose the taxa Pontiella desulfatans F1T gen. nov., sp. nov. and Pontiella sulfatireligans F21T sp. nov. as representatives of the Pontiellaceae fam. nov. within the class Kiritimatiellae.


2020 ◽  
Vol 58 (11) ◽  
Author(s):  
Atsushi Iguchi ◽  
Hironobu Nishii ◽  
Kazuko Seto ◽  
Jiro Mitobe ◽  
Kenichi Lee ◽  
...  

ABSTRACT The O-serogrouping of pathogenic Escherichia coli is a standard method for subtyping strains for epidemiological studies and controls. O-serogroup diversification shows a strong association with the genetic diversity in some O-antigen biosynthesis gene clusters. Through genomic studies, in addition to the types of O-antigen biosynthesis gene clusters (Og-types) from conventional O-serogroup strains, a number of novel Og-types have been found in E. coli isolates. To assist outbreak investigations and surveillance of pathogenic E. coli at inspection institutes, in previous studies, we developed PCR methods that could determine almost all conventional O-serogroups and some novel Og-types. However, there are still many Og-types that may not be determined by simple genetic methods such as PCR. Thus, in the present study, we aimed to develop an additional Og-typing PCR system. Based on the novel Og-types, including OgN32, OgN33, and OgN34, presented in this study, we designed an additional 24 PCR primer pairs targeting 14 novel and 2 diversified E. coli Og-types and 8 Shigella-unique Og-types. Subsequently, we developed 5 new multiplex PCR sets consisting of 33 primers, including the aforementioned 24 primers and 9 primers reported in previous studies. The accuracy and specificity of the PCR system was validated using approximately 260 E. coli and Shigella O-serogroup and Og-type reference strains. The Og-typing PCR system reported here can determine a wide range of Og-types of E. coli and may help epidemiological studies, in addition to the surveillance of pathogenic E. coli.


Sign in / Sign up

Export Citation Format

Share Document