scholarly journals Comparative transient expression analyses on two conserved effectors of Colletotrichum orbiculare reveal their distinct cell death‐inducing activities between Nicotiana benthamiana and melon

2021 ◽  
Author(s):  
Jinlian Chen ◽  
Yoshihiro Inoue ◽  
Naoyoshi Kumakura ◽  
Kazuyuki Mise ◽  
Ken Shirasu ◽  
...  
2012 ◽  
Vol 25 (5) ◽  
pp. 625-636 ◽  
Author(s):  
Kae Yoshino ◽  
Hiroki Irieda ◽  
Fumie Sugimoto ◽  
Hirofumi Yoshioka ◽  
Tetsuro Okuno ◽  
...  

Colletotrichum orbiculare, the causal agent of cucumber anthracnose, infects Nicotiana benthamiana. Functional screening of C. orbiculare cDNAs in a virus vector-based plant expression system identified a novel secreted protein gene, NIS1, whose product induces cell death in N. benthamiana. Putative homologues of NIS1 are present in selected members of fungi belonging to class Sordariomycetes, Dothideomycetes, or Orbiliomycetes. Green fluorescent protein–based expression studies suggested that NIS1 is preferentially expressed in biotrophic invasive hyphae. NIS1 lacking signal peptide did not induce NIS1-triggered cell death (NCD), suggesting apoplastic recognition of NIS1. NCD was prevented by virus-induced gene silencing of SGT1 and HSP90, indicating the dependency of NCD on SGT1 and HSP90. Deletion of NIS1 had little effect on the virulence of C. orbiculare against N. benthamiana, suggesting possible suppression of NCD by C. orbiculare at the postinvasive stage. The CgDN3 gene of C. gloeosporioides was previously identified as a secreted protein gene involved in suppression of hypersensitive-like response in Stylosanthes guianensis. Notably, we found that NCD was suppressed by the expression of a CgDN3 homologue of C. orbiculare. Our findings indicate that C. orbiculare expresses NIS1 at the postinvasive stage and suggest that NCD could be repressed via other effectors, including the CgDN3 homologue.


2021 ◽  
Vol 12 ◽  
Author(s):  
Tanapati Phakham ◽  
Christine Joy I. Bulaon ◽  
Narach Khorattanakulchai ◽  
Balamurugan Shanmugaraj ◽  
Supranee Buranapraditkun ◽  
...  

The striking innovation and clinical success of immune checkpoint inhibitors (ICIs) have undoubtedly contributed to a breakthrough in cancer immunotherapy. Generally, ICIs produced in mammalian cells requires high investment, production costs, and involves time consuming procedures. Recently, the plants are considered as an emerging protein production platform due to its cost-effectiveness and rapidity for the production of recombinant biopharmaceuticals. This study explored the potential of plant-based system to produce an anti-human PD-1 monoclonal antibody (mAb), Pembrolizumab, in Nicotiana benthamiana. The transient expression of this mAb in wild-type N. benthamiana accumulated up to 344.12 ± 98.23 μg/g fresh leaf weight after 4 days of agroinfiltration. The physicochemical and functional characteristics of plant-produced Pembrolizumab were compared to mammalian cell-produced commercial Pembrolizumab (Keytruda®). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis results demonstrated that the plant-produced Pembrolizumab has the expected molecular weight and is comparable with the Keytruda®. Structural characterization also confirmed that both antibodies have no protein aggregation and similar secondary and tertiary structures. Furthermore, the plant-produced Pembrolizumab displayed no differences in its binding efficacy to PD-1 protein and inhibitory activity between programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) interaction with the Keytruda®. In vitro efficacy for T cell activation demonstrated that the plant-produced Pembrolizumab could induce IL-2 and IFN-γ production. Hence, this proof-of-concept study showed that the plant-production platform can be utilized for the rapid production of functional mAbs for immunotherapy.


mSphere ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Zhu Han ◽  
Dianguang Xiong ◽  
Zhiye Xu ◽  
Tingli Liu ◽  
Chengming Tian

ABSTRACT Canker disease is caused by the fungus Cytospora chrysosperma and damages a wide range of woody plants, causing major losses to crops and native plants. Plant pathogens secrete virulence-related effectors into host cells during infection to regulate plant immunity and promote colonization. However, the functions of C. chrysosperma effectors remain largely unknown. In this study, we used Agrobacterium tumefaciens-mediated transient expression system in Nicotiana benthamiana and confocal microscopy to investigate the immunoregulation roles and subcellular localization of CcCAP1, a virulence-related effector identified in C. chrysosperma. CcCAP1 was significantly induced in the early stages of infection and contains cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins (CAP) superfamily domain with four cysteines. CcCAP1 suppressed the programmed cell death triggered by Bcl-2-associated X protein (BAX) and the elicitin infestin1 (INF1) in transient expression assays with Nicotiana benthamiana. The CAP superfamily domain was sufficient for its cell death-inhibiting activity and three of the four cysteines in the CAP superfamily domain were indispensable for its activity. Pathogen challenge assays in N. benthamiana demonstrated that transient expression of CcCAP1 promoted Botrytis cinerea infection and restricted reactive oxygen species accumulation, callose deposition, and defense-related gene expression. In addition, expression of green fluorescent protein-labeled CcCAP1 in N. benthamiana showed that it localized to both the plant nucleus and the cytoplasm, but the nuclear localization was essential for its full immune inhibiting activity. These results suggest that this virulence-related effector of C. chrysosperma modulates plant immunity and functions mainly via its nuclear localization and the CAP domain. IMPORTANCE The data presented in this study provide a key resource for understanding the biology and molecular basis of necrotrophic pathogen responses to Nicotiana benthamiana resistance utilizing effector proteins, and CcCAP1 may be used in future studies to understand effector-triggered susceptibility processes in the Cytospora chrysosperma-poplar interaction system.


Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 524
Author(s):  
Bingqi Wu ◽  
Zhiting Chen ◽  
Xiaohui Xu ◽  
Ronghua Chen ◽  
Siwei Wang ◽  
...  

Functional characterization of plant agrichemical transporters provided an opportunity to discover molecules that have a high mobility in plants and have the potential to increase the amount of pesticides reaching damage sites. Agrobacterium-mediated transient expression in tobacco is simple and fast, and its protein expression efficiency is high; this system is generally used to mediate heterologous gene expression. In this article, transient expression of tobacco nicotine uptake permease (NtNUP1) and rice polyamine uptake transporter 1 (OsPUT1) in Nicotiana benthamiana was performed to investigate whether this system is useful as a platform for studying the interactions between plant transporters and pesticides. The results showed that NtNUP1 increases nicotine uptake in N. benthamiana foliar discs and protoplasts, indicating that this transient gene expression system is feasible for studying gene function. Moreover, yeast expression of OsPUT1 apparently increases methomyl uptake. Overall, this method of constructing a transient gene expression system is useful for improving the efficiency of analyzing the functions of plant heterologous transporter-encoding genes and revealed that this system can be further used to study the functions of transporters and pesticides, especially their interactions.


2012 ◽  
Vol 34 (2) ◽  
pp. 185-191 ◽  
Author(s):  
Yong Won Kang ◽  
Young Jeon ◽  
Hyun-Sook Pai

2008 ◽  
Vol 31 (4) ◽  
pp. 586-597 ◽  
Author(s):  
David G. Breckenridge ◽  
Byung-Ho Kang ◽  
David Kokel ◽  
Shohei Mitani ◽  
L. Andrew Staehelin ◽  
...  

2009 ◽  
Vol 9 (1) ◽  
pp. 96 ◽  
Author(s):  
Raffaele Lombardi ◽  
Patrizia Circelli ◽  
Maria Villani ◽  
Giampaolo Buriani ◽  
Luca Nardi ◽  
...  

2015 ◽  
Vol 208 ◽  
pp. S29
Author(s):  
Laura S. Abeuova ◽  
Herman B. Scholthof ◽  
Erlan M. Ramankulov ◽  
Shuga A. Manabayeva

Sign in / Sign up

Export Citation Format

Share Document