scholarly journals An unconventionally secreted effector from the root knot nematode Meloidogyne incognita , Mi‐ISC‐1, promotes parasitism by disrupting salicylic acid biosynthesis in host plants

2021 ◽  
Author(s):  
Xin Qin ◽  
Bowen Xue ◽  
Haiyang Tian ◽  
Chenjie Fang ◽  
Jiarong Yu ◽  
...  

2021 ◽  
Author(s):  
Chandra Prakash Nama ◽  
B.L. Baheti

Abstract AimThe experiment was carried out during two consecutive Kharif seasons to test the combined efficacy of biochemicals i.e. salicylic acid, ascorbic acid and L-arginine each at 2 % w/w as seed treatment and botanicals viz. neem, lantana and parthenium leaves powder each at 5 g per plant for the management of root-knot nematode, Meloidogyne incognita infecting cluster bean..Method All treatments applied as soil application at the time of sowing. Before sowing observation on initial nematode population/100 cc soil and at the termination of experiment number of galls/plant, number of egg masses/plant, number of eggs and larvae/egg mass, final nematode population/100 cc soil and yield (q/ha) were recorded. ResultAmong different combinations, minimum nematode population were observed with ascorbic acid at 2 per cent w/w + neem leaves powder at 5 g per plant followed by ascorbic acid at 2 per cent + lantana leaves powder at 5 g per plant and salicylic acid at 2 per cent + neem leaves powder at 5 g per plant.Conclusion: Results of experiment showed that application of biochemicals along with botanicals significantly reduced galls per plant as compared to untreated check.



2011 ◽  
Vol 1 (1) ◽  
pp. 5 ◽  
Author(s):  
Hari C. Meher ◽  
Vijay T. Gajbhiye ◽  
Ghanendra Singh

Salicylic acid-(SA) is a plant defense stimulator. Exogenous application of SA might influence the status of glutathione-(GSH). GSH activates and SA alters the expression of defense genes to modulate plant resistance against pathogens. The fate of GSH in a crop following SA treatment is largely unknown. The SA-induced profiles of free reduced-, free oxidized-(GSSG) and protein bound-(PSSG) glutathione in tomato crop following foliar treatment of transplant at 5.0-10.0 &mu;g mL&ndash;1 were measured by liquid chromatography. Resistance to root-knot nematode, <em>Meloidogyne incognita</em> damaging tomato and crop performance were also evaluated. SA treatment at 5.0-10.0 &mu;g mL&ndash;1 to tomato transplants increased GSH, GSSG and PSSG in plant leaf and root, more so in leaf, during crop growth and development. As the fruits ripened, GSH and PSSG increased and GSSG declined. SA reduced the root infection by <em>M. incognita</em>, nematode reproduction and thus, improved the resistance of tomato var. Pusa Ruby, but reduced crop growth and redox status. SA at 5.0 &mu;g mL&ndash;1 improved yield and fruit quality. The study firstly linked SA with activation of glutathione metabolism and provided an additional dimension to the mechanism of induced resistance against obligate nematode pathogen. SA increased glutathione status in tomato crop, imparted resistance against <em>M. incognita</em>, augmented crop yield and functional food quality. SA can be applied at 5.0 &mu;g mL&ndash;1 for metabolic engineering of tomato at transplanting to combine host-plant resistance and health benefits in formulating a strategic nematode management decision.



2019 ◽  
Vol 488 (6) ◽  
pp. 677-681
Author(s):  
Zh. V. Udalova ◽  
S. V. Zinovieva

A study of the processes of lipid peroxidation and the activity of the peroxidase enzyme, as well as photosynthetic pigments in susceptible tomato plants treated with salicylic acid (SA), during infection with the root-knot nematode Meloidogyne incognita. It was shown that in the roots of SA-treated plants, the activity of lipid peroxidation is higher compared to untreated ones, especially in the case of nematode invasion. A significant increase in the activity of lipid peroxidation in SA-treated invasive plants compared with untreated was noted during the transition of larvae to the sedimentary stage and the beginning of the formation of feeding places - giant cells (3-5 days after invasion). This, apparently, contributes to the inhibition of the development of the parasite and the reduction of plant infection, and also indicates the involvement of oxidative processes in the mechanism of the induced resistance of plants to root-knot nematodes. In the SA-treated plants, the qualitative and quantitative composition of photosynthetic pigments, disturbed by invasion, was restored and corresponded to the control level.



2021 ◽  
Vol 63 (5) ◽  
pp. 60-64
Author(s):  
Vu Phong Nguyen ◽  
◽  
Thi Truc Mai Ha ◽  
Le Tram Dang ◽  
The Phuong Nguyen ◽  
...  

Effectors are specific proteins secreted by nematodes into plant cells that facilitate their parasitism to host plants. Inactivation of these effectors could reduce the parasitic ability of nematodes on plants and the damage caused by nematodes. Gene Minc14137encodes an effector unknown function that is cloned from the Meloidogyne incognita. Artificial microRNAs capable of inactivating the gene Minc14137 were synthesised and inserted into an expression vector in soybean. This construct was transformed into the soybean cotyledon node mediated by Agrobacterium tumefaciens and regenerated transgenic plants. Copy number and the expression level of miRNA in T0 transgenic plants were determined by the qPCR technique. In T1 transgenic soybean plants, the pathogenic ability of root-knot nematode is reduced by 44.6-50.5% compared to the control plants. Results show that effector MINC14137 could play an important role in the parasitism of Meloidogyne incognita.



Fruits ◽  
2009 ◽  
Vol 64 (5) ◽  
pp. 295-303 ◽  
Author(s):  
Hang Ye ◽  
Wen-jun Wang ◽  
Guo-jie Liu ◽  
Li-xin Zhu ◽  
Ke-gong Jia




Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 705
Author(s):  
Awdhesh Kumar Mishra ◽  
Kwang-Hyun Baek

Salicylic acid (SA) is an active secondary metabolite that occurs in bacteria, fungi, and plants. SA and its derivatives (collectively called salicylates) are synthesized from chorismate (derived from shikimate pathway). SA is considered an important phytohormone that regulates various aspects of plant growth, environmental stress, and defense responses against pathogens. Besides plants, a large number of bacterial species, such as Pseudomonas, Bacillus, Azospirillum, Salmonella, Achromobacter, Vibrio, Yersinia, and Mycobacteria, have been reported to synthesize salicylates through the NRPS/PKS biosynthetic gene clusters. This bacterial salicylate production is often linked to the biosynthesis of small ferric-ion-chelating molecules, salicyl-derived siderophores (known as catecholate) under iron-limited conditions. Although bacteria possess entirely different biosynthetic pathways from plants, they share one common biosynthetic enzyme, isochorismate synthase, which converts chorismate to isochorismate, a common precursor for synthesizing SA. Additionally, SA in plants and bacteria can undergo several modifications to carry out their specific functions. In this review, we will systematically focus on the plant and bacterial salicylate biosynthesis and its metabolism.



Plant Disease ◽  
2017 ◽  
Vol 101 (6) ◽  
pp. 948-956 ◽  
Author(s):  
Alois A. Bell ◽  
Robert C. Kemerait ◽  
Carlos S. Ortiz ◽  
Sandria Prom ◽  
Jose Quintana ◽  
...  

Locally severe outbreaks of Fusarium wilt of cotton (Gossypium spp.) in South Georgia raised concerns about the genotypes of the causal pathogen, Fusarium oxysporum f. sp. vasinfectum. Vegetative complementation tests and DNA sequence analysis were used to determine genetic diversity among 492 F. oxysporum f. sp. vasinfectum isolates obtained from 107 wilted plants collected from seven fields in five counties. Eight vegetative complementation groups (VCG) were found, with VCG 01117B and VCG 01121 occurring in 66% of the infected plants. The newly recognized VCG 01121 was the major VCG in Berrien County, the center of the outbreaks. All eight VCG resulted in significant increases in the percentages of wilted leaves (27 to 53%) and significant reductions in leaf weight (40 to 67%) and shoot weight (33 to 60%) after being stem punctured into Gossypium hirsutum ‘Rowden’. They caused little or no significant reductions in shoot weight and height or increases in foliar symptoms and vascular browning in a soil-infestation assay. Soil infestation with Meloidogyne incognita race 3 (root-knot nematode) alone also failed to cause significant disease. When coinoculated with M. incognita race 3, all VCG caused moderate to severe wilt. Therefore, the VCG identified in this study belong to the vascular-competent pathotype, and should pose similar threats to cotton cultivars in the presence of the root-knot nematode. Use of nematode-resistant cultivars, therefore, is probably the best approach to control the disease in Georgia.



Sign in / Sign up

Export Citation Format

Share Document