scholarly journals Plant functional traits and canopy structure control the relationship between photosynthetic CO2 uptake and far-red sun-induced fluorescence in a Mediterranean grassland under different nutrient availability

2017 ◽  
Vol 214 (3) ◽  
pp. 1078-1091 ◽  
Author(s):  
Mirco Migliavacca ◽  
Oscar Perez-Priego ◽  
Micol Rossini ◽  
Tarek S. El-Madany ◽  
Gerardo Moreno ◽  
...  
2016 ◽  
Vol 38 (5) ◽  
pp. 511 ◽  
Author(s):  
Zhao Na ◽  
Wang Zhengwen ◽  
Shao Xinqing ◽  
Wang Kun

The diversity–stability relationship has been addressed and debated for decades, but how this relationship is affected by nutrient availability remains contentious. In the present study we assessed the effects of plant diversity, in terms of species richness, functional group composition and functional trait diversity, on the spatial stability of net primary productivity (NPP) following nitrogen and phosphorus application. In addition, we explored how functional traits at the species level contribute to the spatial stability of NPP. The results support the hypothesis that greater diversity leads to higher spatial stability. This relationship was highly dependent on soil nutrient availability, and increasing species richness or functional trait diversity significantly increased spatial variation of NPP under a high N fertilisation level. The effects of high mineral fertilisation rates may perhaps have masked the effects of plant diversity. Although species richness or functional trait diversity of the original and modified communities from which species with particular functional traits had been removed were significantly different, there were no differences in the coefficients of variation in the NPP of those communities. The lack of difference demonstrated that the relationship between spatial variability and biodiversity depended on the measure of diversity applied and that the functional group composition exerted a stronger effect than other diversity measures. Further analyses revealed that spatial stability of NPP was enhanced with increased diversity in vegetative plant height, rooting depth and the presence of legume, and diminished with diversity in the root system type and life cycle under some fertilisation treatments. The present study demonstrates that the relationship between biodiversity and ecosystem functioning is variable with different diversity, identity and environmental factors. Evaluating the contribution of particular traits to community stability will ultimately help us better understand the mechanisms underlying the diversity–stability relationship.


2019 ◽  
Vol 438 (1-2) ◽  
pp. 377-391 ◽  
Author(s):  
Marko J. Spasojevic ◽  
Katherine Harline ◽  
Claudia Stein ◽  
Scott A. Mangan ◽  
Jonathan A. Myers

2021 ◽  
Author(s):  
Hana Tamrat Gebirehiwot ◽  
Alemayehu Abera Kedanu ◽  
Megersa Tafesse Adugna

A woody plant functional trait that directly affects its fitness and environment is decisive to ensure the success of an Agroforestry practice. Hence, recognizing the woody plant functional traits is very important to boost and sustain the productivity of the system when different plants are sharing common resources, like in Agroforestry system. Therefore, the objective of this paper was to understand how woody plant functional traits contribute to sustainable soil management in Agroforestry system and to give the way forward in the case of Ethiopia. The contribution of woody plant species in improving soil fertility and controlling soil erosion is attributed by litter accumulation rate and the season, decomposability and nutrient content of the litter, root physical and chemical trait, and spread canopy structure functional trait. However, spread canopy structure functional trait is used in coffee based Agroforestry system, while with management in Parkland Agro forestry System. Woody species of Agroforestry system added a significant amount of soil TN, OC, Av.P, K, Na, Ca, and Mg nutrients to the soil. Woody plant species of Agroforestry system and their functional traits are very important to ensure sustainable soil management. Thus, further investigation of the woody plant functional traits especially the compatibility of trees with cops is needed to fully utilize the potential of woody species for sustainable soil management practice.


Author(s):  
Shawn P. Serbin ◽  
Philip A. Townsend

AbstractIn this chapter, we begin by exploring the relationship between plant functional traits and functional diversity and how this relates to the characterization and monitoring of global plant biodiversity. We then discuss the connection between leaf functional traits and their resulting optical properties (i.e., reflectance, transmittance, and absorption) and how this related to remote sensing (RS) of functional diversity. Building on this, we briefly discuss the history of RS of functional traits using spectroscopy and imaging spectroscopy data. We include a discussion of the key considerations with the use of imaging spectroscopy data for scaling and mapping plant functional traits across diverse landscapes. From here we provide a review of the general methods for scaling and mapping functional traits, including empirical and radiative transfer model (RTM) approaches. We complete the chapter with a discussion of other key considerations, such as field sampling protocols, as well as current caveats and future opportunities.


2015 ◽  
Vol 35 (20) ◽  
Author(s):  
潘影 PAN Ying ◽  
余成群 YU Chengqun ◽  
土艳丽 TU Yanli ◽  
孙维 SUN Wei ◽  
罗黎鸣 LUO Lilimg ◽  
...  

Author(s):  
Ruiyu Fu ◽  
Zhonghua Zhang ◽  
Cong Hu ◽  
Xingbing Peng ◽  
Shaonuan Lu ◽  
...  

2021 ◽  
Author(s):  
Qifang He ◽  
Kai Jiang ◽  
Weicheng Hou ◽  
Yang Zhao ◽  
Xinhang Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document