Stripe rust resistance geneYr18and its suppressor gene in Chinese wheat landraces

2015 ◽  
Vol 134 (6) ◽  
pp. 634-640 ◽  
Author(s):  
Ling Wu ◽  
Xianchun Xia ◽  
Garry M. Rosewarne ◽  
Huazhong Zhu ◽  
Shizhao Li ◽  
...  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Mengjie Jia ◽  
Lijun Yang ◽  
Wei Zhang ◽  
Garry Rosewarne ◽  
Junhui Li ◽  
...  

Abstract Background Stripe rust (yellow rust) is a significant disease for bread wheat (Triticum aestivum L.) worldwide. A genome-wide association study was conducted on 240 Chinese wheat cultivars and elite lines genotyped with the wheat 90 K single nucleotide polymorphism (SNP) arrays to decipher the genetic architecture of stripe rust resistance in Chinese germplasm. Results Stripe rust resistance was evaluated at the adult plant stage in Pixian and Xindu in Sichuan province in the 2015–2016 cropping season, and in Wuhan in Hubei province in the 2013–2014, 2016–2017 and 2018–2019 cropping seasons. Twelve stable loci for stripe rust resistance were identified by GWAS using TASSEL and GAPIT software. These loci were distributed on chromosomes 1B, 1D, 2A, 2B, 3A, 3B, 4B (3), 4D, 6D, and 7B and explained 3.6 to 10.3% of the phenotypic variation. Six of the loci corresponded with previously reported genes/QTLs, including Sr2/Yr30/Lr27, while the other six (QYr.hbaas-1BS, QYr.hbaas-2BL, QYr.hbaas-3AL, QYr.hbaas-4BL.3, QYr.hbaas-4DL, and QYr.hbaas-6DS) are probably novel. The results suggest high genetic diversity for stripe rust resistance in this population. The resistance alleles of QYr.hbaas-2AS, QYr.hbaas-3BS, QYr.hbaas-4DL, and QYr.hbaas-7BL were rare in the present panel, indicating their potential use in breeding for stripe rust resistance in China. Eleven penta-primer amplification refractory mutation system (PARMS) markers were developed from SNPs significantly associated with seven mapped QTLs. Twenty-seven genes were predicted for mapped QTLs. Six of them were considered as candidates for their high relative expression levels post-inoculation. Conclusion The resistant germplasm, mapped QTLs, and PARMS markers developed in this study are resources for enhancing stripe rust resistance in wheat breeding.


Plant Disease ◽  
2020 ◽  
Author(s):  
Yu Wu ◽  
Yuqi Wang ◽  
Fangjie Yao ◽  
Li Long ◽  
Jing Li ◽  
...  

Stripe rust (yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most destructive diseases of wheat in the world. Chinese wheat landrace ‘Guangtoumai’ (GTM) exhibited a high-level resistance against predominant Pst races in China at the adult-plant stage. The objective of this research was to identify and map the major locus/loci for stripe rust resistance in GTM. A set of 212 recombinant inbred lines (RILs) was developed from a cross between GTM and Avocet S (AvS). The parents and RILs were evaluated in three field tests (2018, 2019, and 2020 at Chongzhou, Sichuan) with the currently predominant Pst races for final disease severity (FDS) and genotyped with the Wheat 55K SNP array to construct a genetic map with 1,031 SNP markers. A major locus, named QYr.GTM-5DL, was detected on chromosome 5DL in GTM. The locus was mapped in a 2.75 cM interval flanked by SNP markers AX-109855976 and AX-109453419, explaining up to 44.4% of the total phenotypic variation. Since no known Yr genes have been reported on chromosome 5DL, QYr.GTM-5DL is very likely a novel adult plant resistance (APR) locus. Haplotype analysis revealed that the resistance allele displayed enhanced levels of stripe rust resistance and is likely present in 5.3% of the 247 surveyed Chinese wheat landraces. The derived cleaved amplified polymorphic sequence (dCAPS) marker dCAPS-5722, converted from a SNP marker tightly linked to QYr.GTM-5DL with 0.3 cM, was validated on a subset of RILs and 48 commercial wheat cultivars developed in Sichuan. The results indicated that QYr.GTM-5DL with its linked dCAPS marker could be used in marker-assisted selection to improve stripe rust resistance in breeding programs, and this QTL will provide new and possibly durable resistance to stripe rust.


2012 ◽  
Vol 39 (11) ◽  
pp. 587-592 ◽  
Author(s):  
Cuiling Yuan ◽  
Hui Jiang ◽  
Honggang Wang ◽  
Kun Li ◽  
Heng Tang ◽  
...  

2018 ◽  
Vol 6 (1) ◽  
pp. 91-98 ◽  
Author(s):  
Yong Wang ◽  
Huaizhi Zhang ◽  
Jingzhong Xie ◽  
Bingmin Guo ◽  
Yongxing Chen ◽  
...  

Euphytica ◽  
2013 ◽  
Vol 196 (2) ◽  
pp. 271-284 ◽  
Author(s):  
Qing-Dong Zeng ◽  
De-Jun Han ◽  
Qi-Lin Wang ◽  
Feng-Ping Yuan ◽  
Jian-Hui Wu ◽  
...  

Crop Science ◽  
2014 ◽  
Vol 54 (5) ◽  
pp. 2131-2139 ◽  
Author(s):  
Jinita Sthapit ◽  
Maria Newcomb ◽  
J. Michael Bonman ◽  
Xianming Chen ◽  
Deven R. See

2020 ◽  
Author(s):  
Yuqi Wang ◽  
Can Yu ◽  
Yukun Cheng ◽  
Fangjie Yao ◽  
Li Long ◽  
...  

Abstract Background: Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant varieties are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions, in addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under controlled greenhouse conditions.Results: Seventeen accessions showed stable high-level resistance to stripe rust across all environments under field tests, while four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers covering the whole genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99%–23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, while four and one QTL conferring seedling and adult-plant resistance respectively were mapped distantly from previously reported stripe rust resistance genes or QTL and may be novel resistance loci.Conclusions: Our results provided an integrated view of stripe rust resistance resources in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.


2020 ◽  
Author(s):  
Yuqi Wang ◽  
Can Yu ◽  
Yukun Cheng ◽  
Fangjie Yao ◽  
Li Long ◽  
...  

Abstract Background: Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant varieties are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions, in addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under controlled greenhouse conditions. Results: Seventeen accessions showed stable high-level resistance to stripe rust across all environments under field tests, while four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers covering the whole genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99%–23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, while four and one QTL conferring seedling and adult-plant resistance respectively were mapped distantly from previously reported stripe rust resistance genes or QTL and may be novel resistance loci. Conclusions: Our results provided an integrated view of stripe rust resistance resources in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.


Plant Disease ◽  
2021 ◽  
Author(s):  
Yunfeng Jiang ◽  
Luyao Duan ◽  
Fangnian Guan ◽  
Fangjie Yao ◽  
Li Long ◽  
...  

Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most destructive diseases of wheat. Identifying novel resistance genes applicable for developing disease resistant cultivars is important for the sustainable control of wheat stripe rust. Chinese wheat landrace Xiaohemai (XHM) is an elite germplasm line with all-stage resistance (ASR) effective against predominant Chinese Pst races. In this study, we performed a bulked segregant analysis coupled with exome capture sequencing (BSE-seq) to identify a candidate genomic region strongly associated with stripe rust resistance on chromosome 1AL in 173 F2:3 lines derived from cross XHM × Avocet S. The gene, designated as YrXH-1AL, was validated by a conventional quantitative trait locus analysis using newly developed Kompetitive allele-specific PCR (KASP) markers, explaining up to 48.50% of the phenotypic variance. By testing a secondary mapping population comprising 144 lines from the same cross at the seedling stage with prevalent Pst race CYR34, YrXH-1AL was identified as a single Mendelian factor in a 1.5 cM interval flanked by KASP markers KP1A_484.33 and KP1A_490.09. This region corresponded to a 5.76 Mb genomic interval on Chinese Spring chromosome 1AL. Furthermore, two co-segregating KASP markers showed high polymorphisms among 130 Chinese wheat cultivars and could be used for marker-assisted selection. Because no other Yr genes for ASR that originated from common wheat have been detected on chromosome 1AL, YrXH-1AL is likely a novel gene that can be incorporated into modern breeding materials to develop wheat cultivars with enhanced stripe rust resistance.


Sign in / Sign up

Export Citation Format

Share Document