QTL‐allele system of main stem node number in recombinant inbred lines of soybean ( Glycine max ) using association versus linkage mapping

2021 ◽  
Author(s):  
Abbas Muhammad Fahim ◽  
Liyuan Pan ◽  
Chunyan Li ◽  
Jianbo He ◽  
Guangnan Xing ◽  
...  
2021 ◽  
Author(s):  
Chao Ma ◽  
Shengnan Ma ◽  
Qinglin Kang ◽  
Yue Wang ◽  
Yutian Sun ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Wen-Xia Li ◽  
Ping Wang ◽  
Hengxing Zhao ◽  
Xu Sun ◽  
Tao Yang ◽  
...  

Although the main stem node number of soybean [Glycine max (L.) Merr. ] is an important yield-related trait, there have been limited studies on the effect of plant density on the identification of quantitative trait loci (QTL) for main stem node number (MSNN). To address this issue, here, 144 four-way recombinant inbred lines (FW-RILs) derived from Kenfeng 14, Kenfeng 15, Heinong 48, and Kenfeng 19 were used to identify QTL for MSNN with densities of 2.2 × 105 (D1) and 3 × 105 (D2) plants/ha in five environments by linkage and association studies. As a result, the linkage and association studies identified 40 and 28 QTL in D1 and D2, respectively, indicating the difference in QTL in various densities. Among these QTL, five were common in the two densities; 36 were singly identified for response to density; 12 were repeatedly identified by both response to density and phenotype of two densities. Thirty-one were repeatedly detected across various methods, densities, and environments in the linkage and association studies. Among the 24 common QTL in the linkage and association studies, 15 explained a phenotypic variation of more than 10%. Finally, Glyma.06G094400, Glyma.06G147600, Glyma.19G160800.1, and Glyma.19G161100 were predicted to be associated with MSNN. These findings will help to elucidate the genetic basis of MSNN and improve molecular assistant selection in high-yield soybean breeding.


2019 ◽  
Vol 79 (01S) ◽  
Author(s):  
M. A. Saleem ◽  
G. K. Naidu ◽  
H. L. Nadaf ◽  
P. S. Tippannavar

Spodoptera litura an important insect pest of groundnut causes yield loss up to 71% in India. Though many effective chemicals are available to control Spodoptera, host plant resistance is the most desirable, economic and eco-friendly strategy. In the present study, groundnut mini core (184), recombinant inbred lines (318) and elite genotypes (44) were studied for their reaction to Spodoptera litura under hot spot location at Dharwad. Heritable component of variation existed for resistance to Spodoptera in groundnut mini core, recombinant inbred lines and elite genotypes indicating scope for selection of Spodoptera resistant genotypes. Only 29 (15%) genotypes belonging to hypogaea, fastigiata and hirsuta botanical varieties under mini core set, 15 transgressive segregants belonging to fastigiata botanical variety among 318 recombinant inbred lines and three genotypes belonging to hypogaea and fastigiata botanical varieties under elite genotypes showed resistance to Spodoptera litura with less than 10% leaf damage. Negative correlation existed between resistance to Spodoptera and days to 50 per cent flowering indicating late maturing nature of resistant genotypes. Eight resistant genotypes (ICG 862, ICG 928, ICG 76, ICG 2777, ICG 5016, ICG 12276, ICG 4412 and ICG 9905) under hypogaea botanical variety also had significantly higher pod yield. These diverse genotypes could serve as potential donors for incorporation of Spodoptera resistance in groundnut.


Sign in / Sign up

Export Citation Format

Share Document