scholarly journals A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1 , MFT , CIPK23 and PHYA

2017 ◽  
Vol 40 (8) ◽  
pp. 1474-1486 ◽  
Author(s):  
Steven Footitt ◽  
Hülya Ölçer-Footitt ◽  
Angela J. Hambidge ◽  
William E. Finch-Savage
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Evan S. Littleton ◽  
Madison L. Childress ◽  
Michaela L. Gosting ◽  
Ayana N. Jackson ◽  
Shihoko Kojima

AbstractCell-autonomous circadian system, consisting of core clock genes, generates near 24-h rhythms and regulates the downstream rhythmic gene expression. While it has become clear that the percentage of rhythmic genes varies among mouse tissues, it remains unclear how this variation can be generated, particularly when the clock machinery is nearly identical in all tissues. In this study, we sought to characterize circadian transcriptome datasets that are publicly available and identify the critical component(s) involved in creating this variation. We found that the relative amplitude of 13 genes and the average level of 197 genes correlated with the percentage of cycling genes. Of those, the correlation of Rorc in both relative amplitude and the average level was one of the strongest. In addition, the level of Per2AS, a novel non-coding transcript that is expressed at the Period 2 locus, was also linearly correlated, although with a much lesser degree compared to Rorc. Overall, our study provides insight into how the variation in the percentage of clock-controlled genes can be generated in mouse tissues and suggests that Rorc and potentially Per2AS are involved in regulating the amplitude of circadian transcriptome output.


Author(s):  
Xu Wang ◽  
Malaika Maraya Gomes ◽  
Christophe Bailly ◽  
Eiji Nambara ◽  
Françoise Corbineau

2020 ◽  
Vol 117 (35) ◽  
pp. 21609-21617
Author(s):  
Zhenxing Liu ◽  
Christopher P. Selby ◽  
Yanyan Yang ◽  
Laura A. Lindsey-Boltz ◽  
Xuemei Cao ◽  
...  

The circadian clock is a global regulatory mechanism that controls the expression of 50 to 80% of transcripts in mammals. Some of the genes controlled by the circadian clock are oncogenes or tumor suppressors. Among theseMychas been the focus of several studies which have investigated the effect of clock genes and proteins onMyctranscription and MYC protein stability. Other studies have focused on effects ofMycmutation or overproduction on the circadian clock in comparison to their effects on cell cycle progression and tumorigenesis. Here we have used mice with mutations in the essential clock genesBmal1,Cry1,andCry2to gain further insight into the effect of the circadian clock on this important oncogene/oncoprotein and tumorigenesis. We find that mutation of bothCry1andCry2, which abolishes the negative arm of the clock transcription–translation feedback loop (TTFL), causes down-regulation of c-MYC, and mutation ofBmal1,which abolishes the positive arm of TTFL, causes up-regulation of the c-MYC protein level in mouse spleen. These findings must be taken into account in models of the clock disruption–cancer connection.


2007 ◽  
Vol 114 (7) ◽  
pp. 1129-1139 ◽  
Author(s):  
Shingo Nakamura ◽  
Takao Komatsuda ◽  
Hideho Miura

2017 ◽  
Vol 18 (2) ◽  
pp. 156-163 ◽  
Author(s):  
Charles Ellery Mayence ◽  
Peter J. Carrick ◽  
Dale Van Beem ◽  
Eefje Broenland ◽  
Kingsley W. Dixon

2019 ◽  
Vol 1 (4) ◽  
pp. 489-500
Author(s):  
Jia Zhao ◽  
Guy Warman ◽  
James Cheeseman

The way in which the circadian clock mechanism develops and decays throughout life is interesting for a number of reasons and may give us insight into the process of aging itself. The Drosophila model has been proven invaluable for the study of the circadian clock and development and aging. Here we review the evidence for how the Drosophila clock develops and changes throughout life, and present a new conceptual model based on the results of our recent work. Firefly luciferase lines faithfully report the output of known clock genes at the central clock level in the brain and peripherally throughout the whole body. Our results show that the clock is functioning in embryogenesis far earlier than previously thought. This central clock in the fly remains robust throughout the life of the animal and only degrades immediately prior to death. However, at the peripheral (non-central oscillator level) the clock shows weakened output as the animal ages, suggesting the possibility of the breakdown in the cohesion of the circadian network.


1996 ◽  
Vol 10 (1) ◽  
pp. 22-28 ◽  
Author(s):  
Philip Westra ◽  
Calvin H. Pearson ◽  
Randal Ristau ◽  
Frank Schweissing

This study was conducted to gain insight into the soil seedbank dynamics of Venice mallow in two irrigated Colorado soils. Venice mallow plants produced an average of 3100 seeds per plant under noncompetitive irrigated conditions. Venice mallow seeds collected from three regions of Colorado and stored at 25 C averaged 95% dormancy and less than 4% nonviable seeds 6 mo after harvesting. Percent nonviable seeds in soil remained relatively constant over 2 yr. Most seeds germinated within the first 3 mo after burial in the first crop production year. Seed dormancy decreased to an average of 40% after 3 mo of burial in cultivated soil at Fruita and Rocky Ford, and thereafter remained relatively constant for 21 mo. Fruita seeds underwent lessin situgermination than seeds from Greeley or Rocky Ford. Innate seed dormancy was lower at Fruita (27%) than at Rocky Ford (39%). Enforced dormancy remained constant over a 21-mo period and was similar for both locations (32%). Seeds buried for 2 yr at Fruita underwent greaterin situgermination (42%) than at Rocky Ford (27%). At Fruita, the level of enforced dormancy was higher and the level of innate dormancy lower at the 20-cm than the 2-cm depths. Venice mallow seed dormancy likely is due to an impermeable hard seed coat.


Author(s):  
Evan S. Littleton ◽  
Shihoko Kojima

AbstractCell-autonomous circadian system, consisting of core clock genes, generates near 24-hour rhythms and regulates the downstream rhythmic gene expression. While it has become clear that the percentage of rhythmic genes varies among mouse tissues, it remains unclear how this variation can be generated, particularly when the clock machinery is nearly identical in all tissues. In this study, we sought to characterize circadian transcriptome datasets that are publicly available and identify the critical component(s) involved in creating this variation. We found that the relative amplitude of 13 genes and the average level of 197 genes correlated with the percentage of cycling genes. Of those, the correlation of Rorc in both relative amplitude and the average level was one of the strongest. In addition, the level of Per2AS, a novel non-coding transcript that is expressed at the Period 2 locus, was also linearly correlated, although with a much lesser degree compared to Rorc. Overall, our study provides insight into how the variation in the percentage of clock-controlled genes can be generated in mouse tissues and suggests that Rorc and potentially Per2AS are involved in regulating the amplitude of circadian transcriptome output.


Sign in / Sign up

Export Citation Format

Share Document