Components of mesophyll resistance and their environmental responses: A theoretical modelling analysis

2017 ◽  
Vol 40 (11) ◽  
pp. 2729-2742 ◽  
Author(s):  
Yi Xiao ◽  
Xin-Guang Zhu
2019 ◽  
Vol 2019 ◽  
pp. 1-20 ◽  
Author(s):  
Haipan Salam ◽  
Yu Dong

A theoretical modelling framework was proposed to predict tensile moduli and tensile strengths of bioepoxy/clay nanocomposites in terms of clay content and epoxidised soybean oil (ESO) content, which could be influenced by properties of blended matrices in nanocomposites, clay filler type, orientation and dispersion status, clay morphological structures, and filler-matrix interfacial bonding. The random orientation of dispersed clay fillers played a significant role in predicting elastic moduli of bioepoxy/clay nanocomposites at clay contents of 1-8 wt% (ESO content: 20 wt%) according to Hui-Shia (H-S) laminate model and Halpin-Tsai (H-T) laminate model. In addition, when clay content was fixed at 5 wt%, H-S laminate model coincided well with the experimental data of bioepoxy/clay nanocomposites at the ESO contents of 0-40 wt%. Whereas, Hirsch model showed closer estimated values with experimental data at the ESO content of 60 wt%. Finally, Turcsányi-Pukànszky-Tüdõs (T-P-T) model predicted better tensile strengths of bioepoxy/clay nanocomposites at clay contents of 1-5 wt% (ESO content: 20 wt%) and at an ESO content of 20-60 wt% (clay content: 5 wt%).


Author(s):  
A M Brown ◽  
J W Dunn

This paper combines the principles of quantitative structural dynamics standards with a theoretical modelling analysis, and applies it to the Jaguar XJ40 body structure design. This work has resulted in high levels of vehicle refinement in terms of noise and vibration transmitted to the occupant in the complete car.


1994 ◽  
Vol 144 ◽  
pp. 1-9
Author(s):  
A. H. Gabriel

The development of the physics of the solar atmosphere during the last 50 years has been greatly influenced by the increasing capability of observations made from space. Access to images and spectra of the hotter plasma in the UV, XUV and X-ray regions provided a major advance over the few coronal forbidden lines seen in the visible and enabled the cooler chromospheric and photospheric plasma to be seen in its proper perspective, as part of a total system. In this way space observations have stimulated new and important advances, not only in space but also in ground-based observations and theoretical modelling, so that today we find a well-balanced harmony between the three techniques.


2015 ◽  
Vol 58 ◽  
pp. 115-131 ◽  
Author(s):  
Ayane Motomitsu ◽  
Shinichiro Sawa ◽  
Takashi Ishida

The ligand–receptor-based cell-to-cell communication system is one of the most important molecular bases for the establishment of complex multicellular organisms. Plants have evolved highly complex intercellular communication systems. Historical studies have identified several molecules, designated phytohormones, that function in these processes. Recent advances in molecular biological analyses have identified phytohormone receptors and signalling mediators, and have led to the discovery of numerous peptide-based signalling molecules. Subsequent analyses have revealed the involvement in and contribution of these peptides to multiple aspects of the plant life cycle, including development and environmental responses, similar to the functions of canonical phytohormones. On the basis of this knowledge, the view that these peptide hormones are pivotal regulators in plants is becoming increasingly accepted. Peptide hormones are transcribed from the genome and translated into peptides. However, these peptides generally undergo further post-translational modifications to enable them to exert their function. Peptide hormones are expressed in and secreted from specific cells or tissues. Apoplastic peptides are perceived by specialized receptors that are located at the surface of target cells. Peptide hormone–receptor complexes activate intracellular signalling through downstream molecules, including kinases and transcription factors, which then trigger cellular events. In this chapter we provide a comprehensive summary of the biological functions of peptide hormones, focusing on how they mature and the ways in which they modulate plant functions.


1992 ◽  
Vol 139 (5) ◽  
pp. 353 ◽  
Author(s):  
J. Pelayo ◽  
J. Paniello ◽  
N. Gisin ◽  
J.W. Burgmeijer ◽  
M. Blondel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document